方晓涛, 严正, 王晗, 徐潇源. 考虑源–荷随机–模糊特征的配电网潮流不确定性量化方法[J]. 中国电机工程学报, 2022, 42(20): 7509-7523. DOI: 10.13334/j.0258-8013.pcsee.211546
引用本文: 方晓涛, 严正, 王晗, 徐潇源. 考虑源–荷随机–模糊特征的配电网潮流不确定性量化方法[J]. 中国电机工程学报, 2022, 42(20): 7509-7523. DOI: 10.13334/j.0258-8013.pcsee.211546
FANG Xiaotao, YAN Zheng, WANG Han, XU Xiaoyuan. Uncertainty Quantification Method of Distribution Network Power Flow Consideringthe Random and Fuzzy Characteristics of Source-load[J]. Proceedings of the CSEE, 2022, 42(20): 7509-7523. DOI: 10.13334/j.0258-8013.pcsee.211546
Citation: FANG Xiaotao, YAN Zheng, WANG Han, XU Xiaoyuan. Uncertainty Quantification Method of Distribution Network Power Flow Consideringthe Random and Fuzzy Characteristics of Source-load[J]. Proceedings of the CSEE, 2022, 42(20): 7509-7523. DOI: 10.13334/j.0258-8013.pcsee.211546

考虑源–荷随机–模糊特征的配电网潮流不确定性量化方法

Uncertainty Quantification Method of Distribution Network Power Flow Consideringthe Random and Fuzzy Characteristics of Source-load

  • 摘要: 分布式可再生能源发电在配电网中的比例逐年提高,其不确定性给配电网的安全运行带来了挑战,量化研究源–荷不确定性对配电网潮流的影响具有重要意义。计及源–荷的随机–模糊特征,该文建立随机源–荷模糊参数模型,提出考虑源–荷随机–模糊特征的配电网潮流不确定性量化方法,包括不确定性表征和灵敏度分析两个阶段。在不确定性表征阶段,提出基于多项式混沌克里金方法(polynomial-chaos- based Kriging,PCK)的配电网随机–模糊潮流高效计算方法。在灵敏度分析阶段,提出基于隶属函数的全局灵敏度分析(global sensitivity analysis,GSA)方法,用于定量评估随机源–荷模糊参数对配电网潮流的影响,准确辨识关键随机源–荷模糊参数。将所提方法应用于含分布式可再生能源的33节点和123节点配电网系统进行仿真计算,验证了所提方法的有效性。

     

    Abstract: The proportion of distributed renewable energy generation in distribution network increases year by year, and its uncertainty brings challenges to the safe operation of distribution network. It is important to quantify the impacts of source-load uncertainty on distribution network power flow. Considering the random and fuzzy characteristics of source-load, this paper established a random source-load fuzzy parameter model. Then, an uncertainty quantification method was proposed for distribution network power flow considering the random and fuzzy characteristics of source-load. The proposed method includes two stages: uncertainty representation and sensitivity analysis. In the uncertainty representation stage, a polynomial-chaos-based Kriging (PCK) method was proposed for the efficient calculation of random-fuzzy power flow in distribution network. In the sensitivity analysis stage, the global sensitivity analysis (GSA) method based on membership function was proposed to quantitatively evaluate the impacts of random source-load fuzzy parameters on distribution network power flow and accurately identify the critical parameters. The proposed method was applied in 33-node and 123-node distribution network systems with distributed renewable energy generators. The effectiveness of the proposed methods was verified by simulation results.

     

/

返回文章
返回