杨春霞, 徐顶娥, 张振, 胡雪原, 耿魏强. 抽水蓄能电站回水排气系统流场数值模拟[J]. 中国电机工程学报, 2022, 42(11): 4069-4078. DOI: 10.13334/j.0258-8013.pcsee.211253
引用本文: 杨春霞, 徐顶娥, 张振, 胡雪原, 耿魏强. 抽水蓄能电站回水排气系统流场数值模拟[J]. 中国电机工程学报, 2022, 42(11): 4069-4078. DOI: 10.13334/j.0258-8013.pcsee.211253
YANG Chunxia, XU Ding’e, ZHANG Zhen, HU Xueyuan, GENG Weiqiang. Numerical Simulation of Return Water Exhaust System Flow Field of Pumped Storage Power Station[J]. Proceedings of the CSEE, 2022, 42(11): 4069-4078. DOI: 10.13334/j.0258-8013.pcsee.211253
Citation: YANG Chunxia, XU Ding’e, ZHANG Zhen, HU Xueyuan, GENG Weiqiang. Numerical Simulation of Return Water Exhaust System Flow Field of Pumped Storage Power Station[J]. Proceedings of the CSEE, 2022, 42(11): 4069-4078. DOI: 10.13334/j.0258-8013.pcsee.211253

抽水蓄能电站回水排气系统流场数值模拟

Numerical Simulation of Return Water Exhaust System Flow Field of Pumped Storage Power Station

  • 摘要: 为研究抽水蓄能电站回水排气系统流场变化,基于SIMPLEC算法和Realizable kε湍流模型,对电站回水排气系统进行三维数值模拟,分析不同总管管径下排气系统排气过程中速度场、压力场的变化。结果表明,总管管径变化时对支管内的气体流场变化较小,总管上气体的压力、速度都随着管径的增加而逐渐降低;总管管径从250mm增加到400mm时,管道内流量逐渐增加,管道流量从16.79kg/s逐渐增加到20.72kg/s,而管道内流速急剧降低,管内流速从215.99m/s降为112.37m/s;在管道交叉处,当总管直径较小时,气体进入总管时受总管管壁的约束作用比较大,气体对管壁的冲击力较小,随着总管直径的增加,气体对总管的撞击力迅速增加,气体流动更加复杂。随着管径的增加,支管截面plane1上的气体速度随着管径的增加呈现先增加后减小的趋势,最大流速出现在管径为300mm的工况下,为284.2m/s;支管与总管交叉处截面plane2上气体速度变化较小,最大流速出现在350mm工况下,为310.8m/s;总管截面plane3上气体速度变化逐渐增加,最高流速为362.3m/s,出现在管径为400mm的工况。

     

    Abstract: In order to study the flow field changes of the return water exhaust system of pumped storage power station, based on SIMPLEC algorithm and Realizable k - \varepsilon turbulence model, the three-dimensional numerical simulation of the return water exhaust system of the power station was carried out, and the velocity and pressure field in the exhaust process of exhaust system under different pipe diameter were analyzed. The results show that when the diameter of the main pipe changes, the gas flow field in the branch pipe changes little, and the pressure and velocity of the gas on the main pipe gradually decrease with the increase of the diameter; when the diameter of the main pipe increases from 250mm to 400mm, the pipe flow gradually increases, and the pipe flow gradually increases from 16.79kg/s to 20.72kg/s, while the pipe flow speed decreases sharply, and the pipe flow speed decreases from 215.99m/s to 112.37m/s; at the intersection of pipes, when the diameter of the main pipe is small, the gas entering the main pipe is restrained greatly by the main pipe wall, and the gas impact on the pipe wall is small. As the diameter of the main pipe increases, the gas impact on the main pipe increases rapidly and the gas flow becomes more complicated. With the increase of pipe diameter, the gas velocity on the branch section plane1 first increases and then decreases with the increase of pipe diameter. The maximum flow rate is 284.2m/s at 300 mm pipe diameter. The gas velocity on the cross section plane2 between branch pipe and main pipe changes slightly, and the maximum flow rate is 310.8m/s at 350 mm. The gas velocity on the main pipe section plane3 gradually increases with the maximum flow rate of 362.3m/s, which occurs at the service condition of 400mm diameter.

     

/

返回文章
返回