王杨, 晁苗苗, 谢小荣, 蒋小龙, 宋子宏. 基于同步相量数据的次同步振荡参数辨识与实测验证[J]. 中国电机工程学报, 2022, 42(3): 899-908. DOI: 10.13334/j.0258-8013.pcsee.210792
引用本文: 王杨, 晁苗苗, 谢小荣, 蒋小龙, 宋子宏. 基于同步相量数据的次同步振荡参数辨识与实测验证[J]. 中国电机工程学报, 2022, 42(3): 899-908. DOI: 10.13334/j.0258-8013.pcsee.210792
WANG Yang, CHAO Miaomiao, XIE Xiaorong, JIANG Xiaolong, SONG Zihong. Identification of Subsynchronous Oscillation Parameters and Field Tests Based on PMU Data[J]. Proceedings of the CSEE, 2022, 42(3): 899-908. DOI: 10.13334/j.0258-8013.pcsee.210792
Citation: WANG Yang, CHAO Miaomiao, XIE Xiaorong, JIANG Xiaolong, SONG Zihong. Identification of Subsynchronous Oscillation Parameters and Field Tests Based on PMU Data[J]. Proceedings of the CSEE, 2022, 42(3): 899-908. DOI: 10.13334/j.0258-8013.pcsee.210792

基于同步相量数据的次同步振荡参数辨识与实测验证

Identification of Subsynchronous Oscillation Parameters and Field Tests Based on PMU Data

  • 摘要: 近年来,国内外风电系统频繁发生次同步振荡(subsynchronous oscillation,SSO)事故,严重影响电力系统安全稳定运行。为了给事故分析、抑制策略制定等提供可靠的数据支撑,亟需开展面向SSO的广域监测工作。为此,提出基于同步相量数据的SSO参数辨识方法。通过严密的数学推导,揭示SSO工况下同步相量数据主要由4种模态组成,从而可将SSO参数辨识问题转化为模态参数提取问题。进一步采用2种经典的模态参数提取算法:矩阵束算法(matrix pencil method,MPM)和特征值系统实现算法(eigenvalue system realization algorithm,ERA)实现了SSO频率与幅值的准确辨识,并利用截断奇异值分解和决定系数提高了辨识的可靠性。所提方法通过合成信号、电磁暂态仿真以及河北沽源实际振荡数据进行了验证,结果显示,即便在振荡初期幅值较小时,该文方法仍可有效辨识SSO参数,因此,理论成果有望在未来为SSO实时预警、全景展示提供技术支撑。

     

    Abstract: In recent years, the subsynchronous oscillation (SSO) has frequently occurred in the wind power system. For the analysis and mitigation, it is of great importance to achieve a wide area monitoring of the incident. To achieve this, this paper proposed a new method to identify SSO parameters based on PMU data provided by wide area measurement systems. Through detailed mathematical derivation, it was revealed that the PMU data under SSO was dominated by four modes. The problem thus could be transformed to a modal parameter extraction (MPE) problem. Two widely-used MPE algorithms, matrix pencil method and the eigenvalue system realization algorithm were employed in this paper to identify the SSR parameters. In addition, the singular value decomposition and the coefficient of determination were used to improve the accuracy of the identification. The effectiveness and superiority of the proposed method was verified by synthetic signals, electromagnetic transient simulation and actual oscillation data of Guyuan, Hebei. The results indicate the proposed method can achieve good accuracy even at the initial stage of the incident; thus, it is a promising tool for the early warning of SSO.

     

/

返回文章
返回