李奇, 刘强, 王天宏, 陈维荣. 基于EKF在线辨识的多堆燃料电池系统最大效率点跟踪控制方法[J]. 中国电机工程学报, 2022, 42(2): 673-683. DOI: 10.13334/j.0258-8013.pcsee.202434
引用本文: 李奇, 刘强, 王天宏, 陈维荣. 基于EKF在线辨识的多堆燃料电池系统最大效率点跟踪控制方法[J]. 中国电机工程学报, 2022, 42(2): 673-683. DOI: 10.13334/j.0258-8013.pcsee.202434
LI Qi, LIU Qiang, WANG Tianhong, CHEN Weirong. Maximum Efficiency Point Tracking Control Method of Multi-stack Fuel Cell System Based on EKF Online Identification[J]. Proceedings of the CSEE, 2022, 42(2): 673-683. DOI: 10.13334/j.0258-8013.pcsee.202434
Citation: LI Qi, LIU Qiang, WANG Tianhong, CHEN Weirong. Maximum Efficiency Point Tracking Control Method of Multi-stack Fuel Cell System Based on EKF Online Identification[J]. Proceedings of the CSEE, 2022, 42(2): 673-683. DOI: 10.13334/j.0258-8013.pcsee.202434

基于EKF在线辨识的多堆燃料电池系统最大效率点跟踪控制方法

Maximum Efficiency Point Tracking Control Method of Multi-stack Fuel Cell System Based on EKF Online Identification

  • 摘要: 为保证多堆燃料电池系统(multi-stack fuel cell system,MFCS)在负载不断变化条件下仍能稳定运行在最大效率点,该文提出了一种基于扩展卡尔曼滤波(extended kalman filter,EKF)在线辨识算法的MFCS最大效率点跟踪控制的方法。该方法利用EKF的实时在线拟合能力,快速实现对MFCS效率/功率曲线的辨识,做到实时估计系统最大效率点功率,并通过功率分配方法实现各个电堆间出力的合理分配,来达到维持系统在最大效率点处稳定运行的目的。最后,在搭建的RT-LAB半实物硬件在环测试平台上,与扰动观测(perturb and observe,P & O)算法进行了对比分析。实验结果证明,该文所提方法能够快速的实时估计MFCS最大效率点功率并且实现跟踪控制,减小燃料电池功率变化率等退化参数,提高燃料电池的耐久性。

     

    Abstract: In order to ensure that the multi-stack fuel cell system (MFCS) can still operate at the maximum efficiency point under the varying load. This paper presented a method of tracking and controlling the maximum efficiency point of MFCS based on the extended kalman filter online identification algorithm. This method utilized the real-time online fitting capability of EKF to quickly realize the identification of the MFCS efficiency/power curve, so as to estimate the maximum efficiency point power of the system in real time. With the power distribution method, the reasonable distribution of the output among the various stacks can be realized to achieve the purpose of maintaining the stable operation of the system at the maximum efficiency point. Finally, the RT-LAB semi-physical hardware-in-the-loop test platform was built and compared with the disturbance observation (P & O) algorithm. The experimental results proved that the method proposed in this paper could quickly estimate the power at the maximum efficiency point of MFCS in real time and realize tracking control. It also reduces the degradation parameters such as the rate of change of fuel cell power and improves the durability of the fuel cell.

     

/

返回文章
返回