杨建, 王力, 宋冬然, 董密, 陈思范, 黄凌翔. 基于孤立森林与稀疏高斯过程回归的风电机组偏航角零点漂移诊断方法[J]. 中国电机工程学报, 2021, 41(18): 6198-6211. DOI: 10.13334/j.0258-8013.pcsee.202224
引用本文: 杨建, 王力, 宋冬然, 董密, 陈思范, 黄凌翔. 基于孤立森林与稀疏高斯过程回归的风电机组偏航角零点漂移诊断方法[J]. 中国电机工程学报, 2021, 41(18): 6198-6211. DOI: 10.13334/j.0258-8013.pcsee.202224
YANG Jian, WANG Li, SONG Dongran, DONG Mi, CHEN Sifan, HUANG Lingxiang. Diagnostic Method of Zero-point Shifting of Wind Turbine Yaw Angle Based on Isolated Forest and Sparse Gaussian Process Regression[J]. Proceedings of the CSEE, 2021, 41(18): 6198-6211. DOI: 10.13334/j.0258-8013.pcsee.202224
Citation: YANG Jian, WANG Li, SONG Dongran, DONG Mi, CHEN Sifan, HUANG Lingxiang. Diagnostic Method of Zero-point Shifting of Wind Turbine Yaw Angle Based on Isolated Forest and Sparse Gaussian Process Regression[J]. Proceedings of the CSEE, 2021, 41(18): 6198-6211. DOI: 10.13334/j.0258-8013.pcsee.202224

基于孤立森林与稀疏高斯过程回归的风电机组偏航角零点漂移诊断方法

Diagnostic Method of Zero-point Shifting of Wind Turbine Yaw Angle Based on Isolated Forest and Sparse Gaussian Process Regression

  • 摘要: 偏航角零点漂移严重影响风电机组性能,将之消除的前提是对其进行可靠且快速的检测。基于风能捕获机理,该文提出一种运用机器学习算法的偏航角零点漂移诊断方法。首先,采用孤立森林(isolated forest,IF)异常值检测算法对数据进行预处理;其次,建立非参数模型稀疏高斯过程回归(sparse Gaussian process regression,SGPR)估计偏航角零点漂移;最后,利用多个风电场的风电机组实际运行数据对所提方法进行验证,并分析不同诊断模型对数据量的依赖性。结果表明:IF+SGPR方法准确性高,所需数据量少,能够快速诊断偏航角零点漂移;该诊断方法能够应用于各种电场不同型号的风电机组,普适性较高。

     

    Abstract: The zero-point shifting of yaw angle seriously affects the performance of the wind turbine, and the premise of elimination is to detect it accurately and quickly. Based on wind energy capture principle, this paper proposed a yaw angle zero-point shifting diagnostic method using machine learning algorithms. Firstly, isolated forest (IF) outlier detection algorithm was presented to preprocess the data; secondly, the non-parametric sparse Gaussian process regression (SGPR) model was established to evaluate the yaw angle zero-point shifting; finally, the proposed method was verified by actual operation data of wind turbines from multiple wind farms, and randomly collected datasets were used to analyze the dependence of different diagnostic models on the amount of data. Verification results show that: the proposed IF+SGPR diagnostic method is highly accurate, requires a small amount of data, and can quickly detect the yaw angle zero-point shifting. It can be applied to different types of wind turbines in different wind farms, and has a high universality.

     

/

返回文章
返回