李盼, 娄钊瑜, 马康, 卢志刚. 一种自适应S变换在电能质量特征提取中的应用[J]. 中国电机工程学报, 2021, 41(22): 7660-7667. DOI: 10.13334/j.0258-8013.pcsee.202010
引用本文: 李盼, 娄钊瑜, 马康, 卢志刚. 一种自适应S变换在电能质量特征提取中的应用[J]. 中国电机工程学报, 2021, 41(22): 7660-7667. DOI: 10.13334/j.0258-8013.pcsee.202010
LI Pan, LOU Zhaoyu, MA Kang, LU Zhigang. Application of Adaptive S-transform in Power Quality Feature Extraction[J]. Proceedings of the CSEE, 2021, 41(22): 7660-7667. DOI: 10.13334/j.0258-8013.pcsee.202010
Citation: LI Pan, LOU Zhaoyu, MA Kang, LU Zhigang. Application of Adaptive S-transform in Power Quality Feature Extraction[J]. Proceedings of the CSEE, 2021, 41(22): 7660-7667. DOI: 10.13334/j.0258-8013.pcsee.202010

一种自适应S变换在电能质量特征提取中的应用

Application of Adaptive S-transform in Power Quality Feature Extraction

  • 摘要: 针对复合电能质量扰动特征提取方法精度不足、计算复杂度高的问题,提出一种直接控制窗函数的标准差来控制时频分辨率的自适应S变换(adaptive S transform,AST)方法。利用高斯窗与电能质量信号频谱的主值区间直接匹配来优化时频分辨率,优化过程独立于S变换(S transform,ST)反馈结果,从根本上避免迭代计算,提高时频分辨率的优化速度。基于AST的时频矩阵提取4种特征量来表征20种典型电能质量扰动类型的特征信息,特征向量维数低,识别能力强。利用极限学习机和概率神经网络分别对AST和ST提取的特征向量进行识别,并结合噪声进一步分析。结果表明,相对于传统S变换该文方法的时频分辨率更高,抗噪能力更强,提取的特征向量更加精确。

     

    Abstract: This paper proposed an adaptive S-transform (AST) which directly controlled the standard deviation of window function to manage resolution. The Gaussian window was directly matched with the main value interval of the signal spectrum to optimize the time-frequency resolution. The process was independent of the S transform (ST) feedback result, improving the optimization speed. Based on the time-frequency matrix of AST, four features were extracted to characterize 20 typical types of power quality disturbances (PQDs). The feature vector had low dimension and strong recognition ability. The feature vectors extracted by AST and ST were identified by Extreme learning machine (ELM) and Probabilistic neural network (PNN) with different noises. The results show that AST can extract more accurate features than ST with better time-frequency resolution and noise resistance.

     

/

返回文章
返回