曲岳晗, 赵洪山, 马利波, 赵仕策, 米增强. 多深度神经网络综合的电力变压器故障识别方法[J]. 中国电机工程学报, 2021, 41(23): 8223-8230. DOI: 10.13334/j.0258-8013.pcsee.201908
引用本文: 曲岳晗, 赵洪山, 马利波, 赵仕策, 米增强. 多深度神经网络综合的电力变压器故障识别方法[J]. 中国电机工程学报, 2021, 41(23): 8223-8230. DOI: 10.13334/j.0258-8013.pcsee.201908
QU Yuehan, ZHAO Hongshan, MA Libo, ZHAO Shice, MI Zengqiang. Multi-depth Neural Network Synthesis Method for Power Transformer Fault Identification[J]. Proceedings of the CSEE, 2021, 41(23): 8223-8230. DOI: 10.13334/j.0258-8013.pcsee.201908
Citation: QU Yuehan, ZHAO Hongshan, MA Libo, ZHAO Shice, MI Zengqiang. Multi-depth Neural Network Synthesis Method for Power Transformer Fault Identification[J]. Proceedings of the CSEE, 2021, 41(23): 8223-8230. DOI: 10.13334/j.0258-8013.pcsee.201908

多深度神经网络综合的电力变压器故障识别方法

Multi-depth Neural Network Synthesis Method for Power Transformer Fault Identification

  • 摘要: 针对现有电力变压器故障识别算法精度低的问题,为实现电力变压器故障的精确识别,通过分析变压器油色谱数据特点,提出一种基于多深度神经网络的电力变压器故障识别算法。该算法包含两部分:第一部分基于Spark构建多个深度神经网络(deep neural networks,DNN)识别器,每个识别器中均加入Dropout层,减轻各识别器的过拟合现象,增强网络泛化能力,然后,利用Spark计算框架将多个深度神经网络识别任务分配给Spark集群内的各从节点,提高计算效率;第二部分是识别结果的融合与决策算法,利用Spark框架的Reduce模块将各识别器的识别结果集结,通过引入信任评价机制与向量相似度评价机制构建多识别器融合决策模型,进而得出最终的综合决策结果。实际算例结果表明,该多神经网络综合的故障识别方法能将诊断正确率在传统DNN算法的基础上提高5%以上,且相对其他对比算法在识别正确率上也有不同程度地提高。

     

    Abstract: Aiming at the problem of low accuracy of existing power transformer fault identification algorithms, in order to realize the accurate identification of power transformer faults, by analyzing the characteristics of transformer oil chromatographic data, a power transformer fault identification algorithm based on multi-depth neural network was proposed. The algorithm consists of two parts: The first part is based on Spark and constructed multiple deep neural networks (DNN) recognizers, and each recognizer is added with a Dropout layer to reduce the over-fitting phenomenon and to enhance the generalization ability of network; After that, using Spark computing framework to assign multiple deep neural network recognition tasks to the slave nodes in the Spark cluster to improve computing efficiency. The second part is the fusion of recognition results and decision-making algorithms. The Reduce module of the Spark framework was used to gather the recognition results of each recognizer. The trust evaluation mechanism and the vector similarity evaluation mechanism were introduced to construct the multi-recognizer fusion decision model, and then get the final comprehensive decision results. The results of actual calculation examples show that the multi-deep neural network integrated fault recognition method can improve the diagnosis accuracy by more than 5% on the basis of the traditional DNN algorithm, and it also has different improvement degrees of recognition accuracy compared with other comparison algorithms.

     

/

返回文章
返回