李福成, 徐箭, 廖思阳, 孙元章, 柯德平, 杨军, 杜静湄. 基于样本关注度和多层次特征的多阶段电力系统暂态稳定评估[J]. 中国电机工程学报, 2021, 41(22): 7596-7607. DOI: 10.13334/j.0258-8013.pcsee.201778
引用本文: 李福成, 徐箭, 廖思阳, 孙元章, 柯德平, 杨军, 杜静湄. 基于样本关注度和多层次特征的多阶段电力系统暂态稳定评估[J]. 中国电机工程学报, 2021, 41(22): 7596-7607. DOI: 10.13334/j.0258-8013.pcsee.201778
LI Fucheng, XU Jian, LIAO Siyang, SUN Yuanzhang, KE Deping, YANG Jun, DU Jingmei. Multi-stage Power System Transient Stability Assessment Based on Sample Attention and Hierarchical Features[J]. Proceedings of the CSEE, 2021, 41(22): 7596-7607. DOI: 10.13334/j.0258-8013.pcsee.201778
Citation: LI Fucheng, XU Jian, LIAO Siyang, SUN Yuanzhang, KE Deping, YANG Jun, DU Jingmei. Multi-stage Power System Transient Stability Assessment Based on Sample Attention and Hierarchical Features[J]. Proceedings of the CSEE, 2021, 41(22): 7596-7607. DOI: 10.13334/j.0258-8013.pcsee.201778

基于样本关注度和多层次特征的多阶段电力系统暂态稳定评估

Multi-stage Power System Transient Stability Assessment Based on Sample Attention and Hierarchical Features

  • 摘要: 当前,电力系统朝着高比例可再生能源接入、电力电子化、互联程度愈发紧密等趋势发展,对暂态稳定评估的准确性与实时性提出了更高的要求。采用基于数据驱动的电力系统暂态稳定评估方法可仅利用系统故障后的动态响应时序数据实现实时、准确的暂态稳定评估。该文提出一种基于样本关注度与多层次特征的多阶段电力系统暂态稳定评估方法,以实现暂态稳定的实时、准确评估。首先,从能量函数观点出发,选取了δ/V/θ/P/Q的原始值、积分量与微分量等时序数据作为原始输入特征量,从而有效提高量测数据中暂态信息的利用率;同时,为表征样本对于稳定规则学习的重要性,定义基于SVM预分类的样本关注度指标;进一步地,利用基准负荷水平信息与稳定性标签构建多层次特征学习监督,增强特征提取的稳定性。最后,基于LSTM自身输出结果的时序特性,提出多阶段电力系统暂态稳定评估方案,在保证较高分类准确率的同时,将错判率保持在较低水平。IEEE 10机39节点系统和某区域电网的算例测试结果验证了该方法的准确性与必要性。

     

    Abstract: At present, power system is moving towards a high proportion of renewable energy access, power electronics, and increasingly tighter interconnection, which puts forward higher requirements for the accuracy and real-time performance of transient stability assessment. Using a data-driven power system transient stability evaluation method can only utilize the dynamic response time series data after a fault to achieve real-time and accurate transient stability evaluation. This paper proposed a multi-stage power system transient stability evaluation method based on sample attention and hierarchical features to achieve real-time and accurate evaluation of transient stability. First, from the energy function point of view, time series data such as the original value of δ/V/θ/P/Q, integral quantity, and differential quantity were selected as the original input feature quantity. At the same time, to characterize the importance of the sample for stable rule learning, this paper defined sample attention index based on SVM pre-classification. Further, the use of reference load level information and stability labels to construct hierarchical feature learning supervision to enhanced the stability of feature extraction. Finally, based on the timing characteristics of LSTM's own output results, a multi-stage power system transient stability assessment scheme was proposed, which kept the error rate at a low level while ensuring a high classification accuracy rate. The test results of an IEEE 10-machine 39-bus system and a regional power grid verify the accuracy and necessity of the method in this paper.

     

/

返回文章
返回