曾君, 孙伟华, 刘俊峰, 李学胜. 一种基于对称SCC结构的电流源型高频谐振功率变换器[J]. 中国电机工程学报, 2016, 36(11): 3027-3035. DOI: 10.13334/j.0258-8013.pcsee.2016.11.019
引用本文: 曾君, 孙伟华, 刘俊峰, 李学胜. 一种基于对称SCC结构的电流源型高频谐振功率变换器[J]. 中国电机工程学报, 2016, 36(11): 3027-3035. DOI: 10.13334/j.0258-8013.pcsee.2016.11.019
CENG Jun, SUN Wei-hua, LIU Jun-feng, LI Xue-sheng. The High Frequency Resonant Current Source Based on SCC With Symmetrical Structure[J]. Proceedings of the CSEE, 2016, 36(11): 3027-3035. DOI: 10.13334/j.0258-8013.pcsee.2016.11.019
Citation: CENG Jun, SUN Wei-hua, LIU Jun-feng, LI Xue-sheng. The High Frequency Resonant Current Source Based on SCC With Symmetrical Structure[J]. Proceedings of the CSEE, 2016, 36(11): 3027-3035. DOI: 10.13334/j.0258-8013.pcsee.2016.11.019

一种基于对称SCC结构的电流源型高频谐振功率变换器

The High Frequency Resonant Current Source Based on SCC With Symmetrical Structure

  • 摘要: 在高频交流配电系统中,高效优质的电源侧功率变换具有重要意义。电感–电容–电感(inductor-capacitor-inductor,LCL)谐振逆变器是一个与负载无关的高频恒流源,能为高频配电系统实现优质高效的电源侧功率变换。但是变换器元件参数的差异以及输入的扰动使得其很难总是保持稳定的恒流状态。基于此,该文提出一种新型的基于对称可控开关电容(switched-controlled capacitor,SCC)结构的LCL谐振变换器,实现可控的恒流源输出。该文首先详细的阐述了SCC结构的分段工作周期和谐振等效电容的计算,求解得到开关占空比与等效电容的关系曲线。然后,通过等效电容与归一化角频率的关系进一步得到占空比D控制的电流增益H的计算公式及特性曲线,从而通过对占空比的控制实现对扰动的精确补偿,实现精确的恒流输出。最后,设计了一台小功率的SCC结构LCL谐振变换器样机。仿真和实验结果表明,该SCC-LCL谐振变换器能提供可控的恒流源,并同时保持较高的转换效率。

     

    Abstract: Among the source side converters with high frequency output capability, inductor-capacitor-inductor(LCL) resonant converter is a kind of load independent current source in the given working condition. However, the component tolerance and the outside perturbations make it difficult to maintain the constant output current. This paper proposed a new LCL resonant converter based on switched-controlled capacitor(SCC) structure. The proposed inverter can provide a controllable current output with the easy control strategy. In specific, the regulation of the duty cycle D changes the equivalent resonant capacitance, and the change of resonant frequency can further adjust the output current gain H against parameter tolerance and outside perturbations. The working principles and operational cycles of the proposed SCC circuit are examined in detail. The relations of the duty ratio to equivalent capacitance and duty cycle to output current gain H are demonstrated as well. Lastly, the simulation model and experiment prototype are implemented with the rated output power. The results of the experiment and simulation show that the proposed resonant converter provides the improved performance of constant current with the higher conversion efficiency.

     

/

返回文章
返回