王超俊, 何頔, 裴晓辉, 严林博, 段志鹏, 何伯述. 高斯型求积方法对全光谱K分布模型精度的影响[J]. 中国电机工程学报, 2015, 35(24): 6421-6430. DOI: 10.13334/j.0258-8013.pcsee.2015.24.018
引用本文: 王超俊, 何頔, 裴晓辉, 严林博, 段志鹏, 何伯述. 高斯型求积方法对全光谱K分布模型精度的影响[J]. 中国电机工程学报, 2015, 35(24): 6421-6430. DOI: 10.13334/j.0258-8013.pcsee.2015.24.018
WANG Chaojun, HE Di, PEI Xiaohui, YAN Linbo, DUAN Zhipeng, HE Boshu. Effects of Gauss Quadrature Schemes on the Accuracy of Full-spectrum k-distribution Method[J]. Proceedings of the CSEE, 2015, 35(24): 6421-6430. DOI: 10.13334/j.0258-8013.pcsee.2015.24.018
Citation: WANG Chaojun, HE Di, PEI Xiaohui, YAN Linbo, DUAN Zhipeng, HE Boshu. Effects of Gauss Quadrature Schemes on the Accuracy of Full-spectrum k-distribution Method[J]. Proceedings of the CSEE, 2015, 35(24): 6421-6430. DOI: 10.13334/j.0258-8013.pcsee.2015.24.018

高斯型求积方法对全光谱K分布模型精度的影响

Effects of Gauss Quadrature Schemes on the Accuracy of Full-spectrum k-distribution Method

  • 摘要: 为了探究求积方法和求积节点数对全光谱K分布模型计算精度的影响,利用全光谱K分布模型,结合离散坐标法,分别在不同的非灰气体工况下计算了一维平行平板间的辐射源项;同时用3种不同的高斯型求积方法(高斯–切比雪夫偶数阶求积方法、高斯–切比雪夫奇数阶求积方法以及高斯–勒让德求积方法)进行求解,并与逐线法的比较,分析了高斯型求积方法和求积节点数对全光谱K分布模型计算精度的影响。结果表明,全光谱K分布模型的计算精度并不是随着求积节点数的增加而提高,而是会产生一定的波动;该波动的影响可以通过增加求积节点数来降低,当求积节点数大于或等于16时,应用文中所提到的任何高斯型求积方法都会获得满意精度的解。

     

    Abstract: To investigate the impacts of the quadrature scheme and the number of quadrature points on the accuracy of full-spectrum k-distribution(FSK) method, the radiative source term in one-dimensional enclosure between two parallel plates filled with non-gray gases was calculated using FSK method combined with the discrete ordinates method in different cases. Numerical calculations were conducted using three types of Gauss quadrature schemes(Gauss-Chebyshev Even-rank quadrature scheme, Gauss-Chebyshev Odd-rank quadrature scheme, and Gauss-Legendre quadrature scheme) and the impacts of the quadrature scheme and the number of quadrature points on the accuracy of FSK method were investigated compared to the line-by-line calculations. Results show that there is a fluctuation for the accuracy of FSK method when the number of quadrature points increases rather than increasing all the time; the effect of the fluctuation can be decreased by increasing the number of quadrature points, and the acceptable accuracy can be obtained when the number of quadrature points is larger than or equal to 16 for different types of Gauss quadrature schemes.

     

/

返回文章
返回