刘昇, 徐政, 华文, 黄弘扬. 用于在线预测静态电压稳定性的SIPSS-Lasso-BP网络[J]. 中国电机工程学报, 2014, 34(34): 6032-6041. DOI: 10.13334/j.0258-8013.pcsee.2014.34.003
引用本文: 刘昇, 徐政, 华文, 黄弘扬. 用于在线预测静态电压稳定性的SIPSS-Lasso-BP网络[J]. 中国电机工程学报, 2014, 34(34): 6032-6041. DOI: 10.13334/j.0258-8013.pcsee.2014.34.003
LIU Sheng, XU Zheng, HUA Wen, HUANG Hong-yang. A SIPSS-Lasso-BP Network for Online Forecasting Static Voltage Stability[J]. Proceedings of the CSEE, 2014, 34(34): 6032-6041. DOI: 10.13334/j.0258-8013.pcsee.2014.34.003
Citation: LIU Sheng, XU Zheng, HUA Wen, HUANG Hong-yang. A SIPSS-Lasso-BP Network for Online Forecasting Static Voltage Stability[J]. Proceedings of the CSEE, 2014, 34(34): 6032-6041. DOI: 10.13334/j.0258-8013.pcsee.2014.34.003

用于在线预测静态电压稳定性的SIPSS-Lasso-BP网络

A SIPSS-Lasso-BP Network for Online Forecasting Static Voltage Stability

  • 摘要: 快速求解系统负荷能力极限是在线评估电力系统电压稳定性的基本要求。提出一种用于离线拟合并在线预测负荷能力极限的SIPSS-Lasso-BP网络。该网络由基于电网状态相似度指标(similarity index of power system state,SIPSS)的样本筛选方法、最小绝对值收缩选择(least absolute shrinkage and select operator,Lasso)方法和BP(back propagation)神经网络共同组成。基于SIPSS的样本筛选方法以样本负荷能力极限值和电网状态相似度量化指标为依据,对训练样本进行筛选。Lasso方法对训练样本进行回归分析,确定各状态量中对负荷能力极限最具有解释性的系统状态量。BP神经网络通过精简后的训练样本来离线拟合负荷能力极限并用于在线预测。通过新英格兰39节点算例和某省实际算例对SIPSS-Lasso-BP网络的测试结果表明,该方法能够在保证预测精度的情况下明显提高BP神经网络的离线训练效率。

     

    Abstract: Solving loadability limit quickly is the basic requirement of online assessment for power systems voltage stability. This paper proposed a SIPSS-Lasso-BP network aiming to offline fitting and online forecasting the loadability limit. The network consisted of the similarity index of power system state(SIPSS) based screening method, the least absolute shrinkage and select operator(Lasso) algorithm and the back propagation(BP) neural network. The SIPSS based screening method screened the training samples according to their loadability limits and similarity indexes of power system state. The Lasso algorithm selected the principal system state variables which were most explanatory to the loadability limit via the modified regression analysis of the training samples. The BP network was used to offline fit and online forecast the loadability limit of the system through the cut training samples. The test results on the New England 39-bus system and a practical example show that the SIPSS-Lasso-BP network can significantly improve the efficiency of offline training the BP network and guarantee the forecasting accuracy.

     

/

返回文章
返回