水热处理对我国典型褐煤气化特性的影响
Influence of the Hydrothermal Dewatering on the Gasification Characteristics of Typical Chinese Lignite
-
摘要: 选取我国主要褐煤产区不同煤阶的3种典型褐煤,用水热处理对其进行脱水改性并研究改性前后褐煤CO2气化特性的变化。结果表明,经过水热处理后,褐煤中的水分大幅度下降,最高降幅达87.31%,固定碳和热值上升,氧含量下降,煤阶参数(O/C原子比)下降,褐煤煤阶上升。水热处理过程中煤质结构的复杂重整导致煤焦孔径向微孔方向发展,先降低后增加,而比表面积和孔容呈现先上升后下降的趋势。煤质结构深度变化和煤阶的上升使得改性后褐煤的气化特性曲线向高温区移动,碳转化率达到50%时的气化温度上升。动力学计算结果表明,经过水热改性后气化反应活化能上升,反应级数发生变化。较高的水热处理终温和相对较低的原煤煤阶都使得水热脱水改性的效果更为显著。Abstract: The influences of hydrothermal dewatering(HTD) performed at different temperatures on the gasification characteristics of typical lignites with different metamorphic grades in China were investigated in this paper. Results show that the upgrading process significantly decreases the inherent moisture at a maximum degree of 87.31% and oxygen content,and increases calorific value and fixed carbon content.According to the oxygen/carbon ratio parameter, the coal rank increases. The complex changes occurred on coal structure during the HTD process lead to pore size of coal char develop to the microporous region, and the surface area and volume increase at first but then decrease. Due to the development of coal structure and the increment of coal rank, the gasification process of upgraded coal is delayed towards high temperature region, the temperature increases when carbon conversion rate reaches 50%. From the results of kinetic calculation, activation energy increases after the hydrothermal treatment, and the reaction order of mechanistic model is changed. Besides, all the changes caused by HTD are more obvious when the upgraded temperature increases from 250 ℃ to 300 ℃ and when the rank of raw brown coal is lower.