徐婧, 赵鹏程, 袁国生, 刘瑞, 马素霞. 基于数据挖掘的汽轮机组冷端优化[J]. 中国电机工程学报, 2021, 41(2): 423-431. DOI: 10.13334/j.0258-8013.pcsee.201108
引用本文: 徐婧, 赵鹏程, 袁国生, 刘瑞, 马素霞. 基于数据挖掘的汽轮机组冷端优化[J]. 中国电机工程学报, 2021, 41(2): 423-431. DOI: 10.13334/j.0258-8013.pcsee.201108
XU Jing, ZHAO Pengcheng, YUAN Guosheng, LIU Rui, MA Suxia. Data-mining Based Operational Optimization for Cold-end Subsystem of the Steam Turbine[J]. Proceedings of the CSEE, 2021, 41(2): 423-431. DOI: 10.13334/j.0258-8013.pcsee.201108
Citation: XU Jing, ZHAO Pengcheng, YUAN Guosheng, LIU Rui, MA Suxia. Data-mining Based Operational Optimization for Cold-end Subsystem of the Steam Turbine[J]. Proceedings of the CSEE, 2021, 41(2): 423-431. DOI: 10.13334/j.0258-8013.pcsee.201108

基于数据挖掘的汽轮机组冷端优化

Data-mining Based Operational Optimization for Cold-end Subsystem of the Steam Turbine

  • 摘要: 冷端系统的优化运行是机组节能运行的重要环节。基于历史运行数据,结合数据挖掘方法与深度学习算法,提出了汽轮机组冷端优化的研究框架。首先,结合工况划分与高斯混合模型对真空进行聚类,确定多工况下真空的基准值区间;接着,结合最大互信息系数与长短时记忆神经网络构建真空预测模型,通过比较真空预测值与基准值,实现真空的异常检测;最后,以某在役1000MW超超临界湿冷凝汽式机组为研究对象进行分析验证,分析结果表明,论文提出的机组冷端优化方法可提供有效的真空异常预警及优化信息,有助于机组进一步挖掘其自身的节能潜力。

     

    Abstract: The operation of condenser plays a significant role in energy saving for the coal-fired power unit. A data-mining based methodology was proposed in this paper combing with deep learning methods. Firstly, Gaussian mixture model was employed to determine the benchmark of vacuum by mining the historical operational data with respect to the varying working conditions. Secondly, a predicted model of vacuum was established by long short-term memory networks and maximum index coefficient. The vacuum's anomaly can be detected by comparing the predicted value and the benchmark. Finally, the methodology was validated by an on-duty coal-fired power unit with 1000 MW capacity. Results show that the proposed method can detect vacuum's anomaly effectively and provide opportunities for energy saving enhancement.

     

/

返回文章
返回