Adaptive Fundamental Component Extraction and Frequency Tracking Algorithm for Power Systems
-
摘要: 传统的电网频率跟踪算法一般依赖于调整所选电网模型的响应速度或精度来增强电力系统异常情况下的稳定性,为减小电网谐波或噪声对频率测量的影响,提出了一种自适应基波提取与频率跟踪算法。该算法通过对电网状态的预估,获得电网频率与电压幅值的估计值,用于实时更新无限冲击响应滤波器系数,实现电网的自适应基波提取,同时还给出了滤波器在系数切换时快速稳定的方法,在此基础上,引入鲁棒扩展卡尔曼滤波算法,实现对基波频率的精确跟踪。仿真和实测结果表明,该算法响应速度快,测量精度高,可有效抑制电网噪声对频率跟踪结果的影响,且算法复杂度较低,可以满足电力系统实时应用的要求。Abstract: The conventional frequency tracking algorithm for power systems generally relies on adjusting the response speed or accuracy of the chosen power system model for applications to enhance the stability of power system under abnormal states.To reduce the impacts of harmonic and noise on frequency measurements,an adaptive fundamental component extraction and frequency tracking algorithm was presented.By pre-estimating the state of power grid,this algorithm obtained the estimated frequency and amplitude of voltage,which were used to update infinite impulse response filter coefficients in real time,thus adaptive fundamental wave extraction was achieved.In addition,a method to rapidly stabilize the performance of the fundamental wave filter when filter’s coefficients were switched was proposed.On the base of this,a robust extended Kalman filter was introduced to achieve accurate frequency tracking.Simulation and experimental results show that the new algorithm increases the speed and accuracy of response,effectively suppresses the impacts of noise on the frequency tracking results,significantly lowers the arithmetic complexity over the conventional method and satisfies the requirements of real time applications for power system.
-
[1] 柴旭峥,文习山,关根志,等.一种高精度的电力系统谐波分析算法[J].中国电机工程学报,2003,23(9):67-70.Chai Xuzheng,Wen Xishan,Guan Genzhi,et al.Analgorithm with high accuracy for analysis of power systemharmonics[J].Proceedings of the CSEE,2003,23(9):67-70(in Chinese). [2] 李一泉,何奔腾.一种基于傅氏算法的高精度测频方法[J].中国电机工程学报,2005,26(2):78-81.Li Yiquan,He Benteng.A high-accuracy algorithm formeasuring frequency of power system based on fourierfilter[J].Proceedings of the CSEE,2005,26(2):78-81(inChinese). [3] Dash P K,Pradhan A K,Panda G.Frequency estimationof distorted power system signals using extended complexKalman filter[J].IEEE Transactions on Power Delivery,1999,14(3),761-766.
[4] Aurobinda R,Ashok K P,Rao K P.A novel Kalman filterfor frequency estimation of distorted signals in powersystems[J].IEEE Transactions on Instrumentation andMeasurement,2002,51(3):469-479.
[5] Dash P K,Jena R K,Panda G,et al.An extended complexkalman filter for frequency measurement of distortedsignals[J].IEEE Transactions on Instrumentation andMeasurement,2000,49(4):746-753.
[6] Huang C H,Lee C H,Shih K J,et al.Frequencyestimation of distorted power system signals using arobust algorithm[J].IEEE Transactions on PowerDelivery,2008,23(1):41-51.
[7] 麦瑞坤,何正友,何文,等.电力系统频率的自适应跟踪算法[J].中国电机工程学报,2010,30(16),73-78.Mai Ruikun,He Zhengyou,He Wen,et al.Adaptivefrequency tracking algorithm for power systems[J].Proceedings of the CSEE,2010,30(16),73-78(inChinese). [8] Miodrag D K.A simple recursive algorithm for frequencyestimation[J].IEEE Transactions on Instrumentation andMeasurement,2004,53(2):335-340.
[9] Chudamani R,Vasudevan K,Ramalingam C S.Real-timeestimation of power system frequency using nonlinearleast squares[J].IEEE Transactions on Power Delivery,2009,24(3):1021-1028.
[10] Pradhan A K,Routray A,Basak A.Power systemfrequency estimation using least mean squaretechnique[J].IEEE Transactions on Power Delivery,2005,20(3):1812-1816.
[11] El-Shafey M H,Mansour M M.Application of a newfrequency estimation technique to power systems[J].IEEETransactions on Power Delivery,2006,21(3):1045-1053.
[12] 黄荣雄,吴杰康,韦善革.基于小波变换的电力系统谐波频率测量算法[J].电力学报,2010,25(3):193-196.Huang Rongxiong,Wu Jiekang,Wei Shange.Wavelettransform basde methods for harmonic frequencyestimation of power systems[J].Journal of ElectricPower,2010,25(3):193-196(in Chinese). [13] 赵成勇,胥国毅,何明锋,等.基于改进递归小波的电力系统频率测量[J].电工技术学报,2005,20(6):62-65,76.Zhao Chengyong,Xu Guoyi,He Mingfeng,et al.Powersystem frequency measurement based on IRWT[J].Transactions of China Electrotechnical Society,2005,20(6):62-65,76(in Chinese). [14] 罗谌持,张明.基于Sigma点卡尔曼滤波器的电力频率跟踪新算法[J].电力系统自动化,2008,32(13):35-39.Luo Chenchi,Zhang Ming.Frequency tracking ofdistorted power signal using complex sigma point Kalmanfilter[J].Automation of Electric Power Systems,2008,32(13):35-39(in Chinese). [15] Borkowski D,Bien A.Improvement of accuracy of powersystem spectral analysis by coherent resampling[J].IEEETransactions on Power Delivery,2009,24(3):1004-1013.
[16] Shih K R,Huang S J.Application of a robust algorithmfor dynamic state estimation of a power system[J].IEEETransactions on Power Delivery,2002,17(1):141-147.
[17] 张世平,赵永平,张绍卿,等.一种基于自适应陷波器的电网频率测量新方法[J].中国电机工程学报,2003,23(7):81-83.Zhang Shiping,Zhao Yongping,Zhang Shaoqing,et al.A novel approach to measurement of power systemfrequency using adaptive notch filter[J].Proceedings ofthe CSEE,2003,23(7):81-83(in Chinese). [18] 储昭碧,张崇巍,冯小英.基于自适应陷波滤波器的频率和幅值估计[J].自动化学报,2010,36(1):60-66.Chu Zhaobi,Zhang Chongwei,Feng Xiaoying.Adaptivenotch filter-based frequency and amplitude estimation[J].Acta Automatica Sinica,2010,36(1):60-66(in Chinese). [19] Karimi H,Karimi-Ghartemani M,Iravani M R.Estimationof frequency and its rate of change for applications inpower systems[J].IEEE Transactions on Power Delivery,2004,19(2):472-480.
[20] Mojiri M,Karimi-Ghartemani M,Bakhshai A.Estimationof power system frequency using an adaptive notchfilter[J].IEEE Transactions on Instrumentation andMeasurement,2007,56(6):2470-2477.
[21] Mojiri M,Yazdani D,Bakhshai A.Robust adaptivefrequency estimation of three-phase power systems[J].IEEE Transactions on Instrumentation and Measurement,2010,59(7):1793-1802.
[22] Kusljevi M D.A simultaneous estimation of frequency,magnitude,and active and reactive power by usingdecoupled modules[J].IEEE Transactions onInstrumentation and Measurement,2010,59(7):1866-1873.
[23] Tomic J J,Kusljevic M D,Vujicic V V.A new powersystem digital harmonic analyzer[J].IEEE Transactions onPower Delivery,2007,22(2):772-780.
[24] Kusljevi M D.Simultaneous frequency and harmonicmagnitude estimation using decoupled modules andmultirate sampling[J].IEEE Transactions onInstrumentation and Measurement,2010,59(4):954-962.
[25] 洪慧娜,李晓明.电力系统基波交流采样频率修正的“三点”算法[J].高电压技术,2006,32(11):139-141.Hong Huina,Li Xiaoming.“Three-point”arithmetic foramendment ac sampling of fundamental wave frequencyin power system[J].High Voltage Engineering,2006,32(11):139-141(in Chinese). [26] Lopez A,Montao J C,Castilla M,et al.Power systemfrequency measurement under nonstationary situations[J].IEEE Transactions on Power Delivery,2008,23(2):562-567.
[27] Sophocles J O.Introduction to signal processing[M].Beijing:Tsinghua University Press,2003:583-592.
计量
- 文章访问数: 0
- HTML全文浏览量: 0
- PDF下载量: 0