康守强, 王玉静, 杨广学, 宋立新, V.I.MIKULOVICH. 基于经验模态分解和超球多类支持向量机的滚动轴承故障诊断方法[J]. 中国电机工程学报, 2011, 31(14): 96-102. DOI: 10.13334/j.0258-8013.pcsee.2011.14.008
引用本文: 康守强, 王玉静, 杨广学, 宋立新, V.I.MIKULOVICH. 基于经验模态分解和超球多类支持向量机的滚动轴承故障诊断方法[J]. 中国电机工程学报, 2011, 31(14): 96-102. DOI: 10.13334/j.0258-8013.pcsee.2011.14.008
KANG Shou-qiang, WANG Yu-jing, YANG Guang-xue, SONG Li-xin, V.I.MIKULOVICH. Rolling Bearing Fault Diagnosis Method Using Empirical Mode Decomposition and Hypersphere Multiclass Support Vector Machine[J]. Proceedings of the CSEE, 2011, 31(14): 96-102. DOI: 10.13334/j.0258-8013.pcsee.2011.14.008
Citation: KANG Shou-qiang, WANG Yu-jing, YANG Guang-xue, SONG Li-xin, V.I.MIKULOVICH. Rolling Bearing Fault Diagnosis Method Using Empirical Mode Decomposition and Hypersphere Multiclass Support Vector Machine[J]. Proceedings of the CSEE, 2011, 31(14): 96-102. DOI: 10.13334/j.0258-8013.pcsee.2011.14.008

基于经验模态分解和超球多类支持向量机的滚动轴承故障诊断方法

Rolling Bearing Fault Diagnosis Method Using Empirical Mode Decomposition and Hypersphere Multiclass Support Vector Machine

  • 摘要: 滚动轴承故障定位,特别是对其性能退化程度的诊断可以更有效地进行设备维护以降低停机率。提出了对滚动轴承不同故障位置及性能退化程度的非平稳振动信号进行特征提取和智能分类的故障诊断方法。该方法对各状态振动信号进行经验模态分解,得到一系列固有模态函数和一个残余分量。经验模态分解方法具有分解自适应性和分解唯一性。对每个固有模态函数建立自回归模型,分别采用Yule-Walker和Ulrych-Clayton两种方法求得模型参数和残差方差,并以此作为各类状态信号的特征矩阵,输入到改进的超球多类支持向量机分类器,判断滚动轴承故障位置及性能退化程度。实验结果表明,提出的方法可同时实现滚动轴承故障位置及性能退化程度的智能诊断,且基于经验模态分解结合自回归模型的Ulrych-Clayton参数估计进行特征提取的诊断方法识别率更高。

     

    Abstract: Rolling bearing fault location and especially the diagnosis of its performance degradation degree can be used for more effective equipment maintenance to reduce downtime rate.For nonstationary vibration signal,a new fault diagnosis method was presented to achieve feature extraction and intelligent classification of different fault positions and performance degradation degree of rolling bearing signal.By using empirical mode decomposition(EMD) method,the vibration signal of each status could be decomposed into a set of intrinsic mode function(IMF) components and a residual component.Empirical mode decomposition method has well adaptability and the result using empirical mode decomposition method is the unique one.Then autoregressive(AR) model could be established for each intrinsic mode function component,and model parameters and variances of remnant which were regarded as feature vectors could be obtained by using Yule-Walker method and Ulrych-Clayton method respectively,then feature vectors were regarded as the input of improved hypersphere multiclass support vector machine classifier for judging rolling bearing fault location and its performance degradation degree.Experiments results show that,by using the presented method,the intelligent diagnosis of rolling bearing fault position and performance degradation degree can be achieved together,and the recognition rate using empirical mode decomposition combined with Ulrych-Clayton parameter estimate method of autoregressive model for feature extraction is more higher.

     

/

返回文章
返回