风速与风电功率的联合条件概率预测方法

王松岩, 于继来

王松岩, 于继来. 风速与风电功率的联合条件概率预测方法[J]. 中国电机工程学报, 2011, 31(7): 7-15. DOI: 10.13334/j.0258-8013.pcsee.2011.07.005
引用本文: 王松岩, 于继来. 风速与风电功率的联合条件概率预测方法[J]. 中国电机工程学报, 2011, 31(7): 7-15. DOI: 10.13334/j.0258-8013.pcsee.2011.07.005
WANG Song-yan, YU Ji-lai. Joint Conditions Probability Forecast Method for Wind Speed and Wind Power[J]. Proceedings of the CSEE, 2011, 31(7): 7-15. DOI: 10.13334/j.0258-8013.pcsee.2011.07.005
Citation: WANG Song-yan, YU Ji-lai. Joint Conditions Probability Forecast Method for Wind Speed and Wind Power[J]. Proceedings of the CSEE, 2011, 31(7): 7-15. DOI: 10.13334/j.0258-8013.pcsee.2011.07.005

风速与风电功率的联合条件概率预测方法

基金项目: 

国家自然科学基金项目(50877014)~~

详细信息
    作者简介:

    王松岩(1982),男,博士研究生,现从事包含间歇式电源的电力系统能效及优化调度研究,wangsongyan@163.com;于继来(1965),男,博士,教授,博士生导师,从事电网络理论分析与应用、电力系统优化调度与运营、电力系统稳定性分析与数值仿真等研究,yupwrs@hit.edu.cn

  • 中图分类号: TM614

Joint Conditions Probability Forecast Method for Wind Speed and Wind Power

Funds: 

Project Supported by National Natural Science Foundation of China(50877014)

  • 摘要: 采用确定性预测模型对风速和风电功率进行预测,无法传递结果的概率可信程度,不适应风险分析与调控应用的需要。为此,建立了以当前时段实测风速和下一时段预报风速为联合条件的离散预报误差概率统计(forecast errorprobability distribution,FEPD)模型,并以该模型对未来时段的预报误差概率分布进行预测。首先由历史统计结果确定修正因子,利用风速波动分布特征(speed disturbanceprobability distribution,DPD)对预报误差概率分布进行偏度修正,再将修正后的预报误差概率分布与由确定性预测算法得到的结果相结合,从而得到风速概率性预测结果。实例表明,所提方法可以较好地预测未来时段风速及风电功率变化的概率分布结果。
    Abstract: Certainty forecast method could not meet the need of risk analysis and system operation because probability information was not included.This paper chose measured speed and forecast speed as joint conditions and made a discrete forecast error probability distribution(FEPD) model which could be used for next-time wind speed probability forecast.Firstly speed disturbance probability distribution(DPD) was adopted to modify skewness of FEPD with modification factor,then modified FEPD and certainty forecast value were combined to obtain wind speed probability distribution forecast result.DPD,FEPD and modification factor were all obtained from historical data with different statistical periods.In modification process,samples real-time scrolling technology was used to guarantee the distribution reasonable and promptly.Result shows that this model has a good effect when forecasting wind speed or power output probability distribution in next time range.
  • [1]

    Billinton R,Chen H,Ghajar R.Time-series models for reliabilityevaluation of power systems including wind energy[J].Microelectron.Reliab,1996,36(9):1253-1261.

    [2] 杨秀媛,肖洋,陈树勇.风电场风速和发电功率预测研究[J].中国电机工程学报,2005,25(11):1-5.Yang Xiuyuan,Xiao Yang,Chen Shuyong.Wind speed and generatedpower forecasting in wind farm[J].Proceedings of the CSEE,2005,25(11):1-5(in Chinese).
    [3] 潘迪夫,刘辉,李燕飞.基于时间序列分析和卡尔曼滤波算法的风电场风速预测优化模型[J].电网技术,2008,32(7):82-86.Pan Difu,Liu Hui,Li Yanfei.A wind speed forecasting optimizationmodel for wind farms based on time series analysis and kalman filteralgorithm[J].Power System Technology,2008,32(7):82-86(inChinese).
    [4] 周纬,彭昱,孙辉,等.含风电场的电力系统动态经济调度[J].中国电机工程学报,2009,29(25):13-17.Zhou Wei,Peng Yu,Sun Hui,et al.Dynamic economic dispatch inwind power integrated system[J].Proceedings of the CSEE,2009,29(25):13-17(in Chinese).
    [5] 孙元章,吴俊,李国杰,等.基于风速预测和随机规划的含风电场电力系统动态经济调度[J],中国电机工程学报,2009,29(4):41-47.Sun Yuanzhang,Wu Jun,Li Guojie,et al.Dynamic economic dispatchconsidering wind power penetration based on wind speed forecastingand stochastic programming[J].Proceedings of the CSEE,2009,29(4):41-47(in Chinese).
    [6] 张国强,张伯明.考虑风电接入后二次备用需求的优化潮流算法[J].电力系统自动化,2009,33(8):25-28.Zhang Guoqiang,Zhang Boming.Optimal power flow approachconsidering secondary reserve demand with wind power integration[J].Automation of Electric Power Systems,2009,33(8):25-28(inChinese).
    [7] 葛炬,王飞,张粒子.含风电场电力系统旋转备用获取模型[J].电力系统自动化,2010,34(6):32-36.Ge Ju,Wang Fei,Zhang Lizi.Spinning reserve model in the windpower integrated power system[J].Automation of Electric PowerSystems,2010,34(6):32-36(in Chinese).
    [8]

    Bludszuweit H,Domínguez-Navarro J A.Statistical analysis of windpower forecast error[J].IEEE Trans.on Power Systems,2008 23(3):983-991.

    [9]

    Doherty R,Malley M O.A new approach to quantify reserve demandin systems with significant installed wind capacity[J].IEEE Trans.onPower Systems,2005,20(2):587-595.

    [10] 范高锋,王伟胜,刘纯,等.基于人工神经网络的风电功率预测[J].中国电机工程学报,2008,28(34):118-123.Fan Gaofeng,Wang Weisheng,Liu Chun,et al.Wind powerprediction based on artificial neural network[J].Proceedings of theCSEE,2008,28(34):118-123(in Chinese).
    [11]

    Cabezon D,Marti I,Sanisidro M J,et al.Comparison of methods forpower curve modeling[C]//Proceedings of Global Wind PowerConference.Chicago,IL,USA:IEEE,2004:1-9.

    [12]

    Gilchrist W.Statistical forecasting[M].New York:John Wiley&Sons,Ltd,1987:112-119.

计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-11-07

目录

    /

    返回文章
    返回