孙秋野, 刘月, 胡旌伟, 胡旭光. 基于GAN的非侵入式自能源建模[J]. 中国电机工程学报, 2020, 40(21): 6784-6794. DOI: 10.13334/j.0258-8013.pcsee.201016
引用本文: 孙秋野, 刘月, 胡旌伟, 胡旭光. 基于GAN的非侵入式自能源建模[J]. 中国电机工程学报, 2020, 40(21): 6784-6794. DOI: 10.13334/j.0258-8013.pcsee.201016
SUN Qiu-ye, LIU Yue, HU Jing-wei, HU Xu-guang. Non-intrusive We-energy Modeling Based on GAN Technology[J]. Proceedings of the CSEE, 2020, 40(21): 6784-6794. DOI: 10.13334/j.0258-8013.pcsee.201016
Citation: SUN Qiu-ye, LIU Yue, HU Jing-wei, HU Xu-guang. Non-intrusive We-energy Modeling Based on GAN Technology[J]. Proceedings of the CSEE, 2020, 40(21): 6784-6794. DOI: 10.13334/j.0258-8013.pcsee.201016

基于GAN的非侵入式自能源建模

Non-intrusive We-energy Modeling Based on GAN Technology

  • 摘要: 自能源(we-energy)作为能源互联网的能源终端,其模型是能源互联网优化和调度的基础。该文针对自能源建模问题,提出一种基于生成式对抗网络(generative adversarial networks,GAN)的非侵入式建模方法。首先,考虑到自能源中风、光、储、耦合设备的产能特性,通过联合滑动与梯度分离实现自能源的非侵入式监测。进一步地,结合生成对抗网络的生成能力和判别能力,利用改进的GAN处理自能源中电-气-热数据时间异步问题,从而实现能源设备的分类和辨识,并在此基础上建立自能源的可调度模型。最后,以北方某能源区域作为算例进行仿真,验证所提方法的有效性和准确性。

     

    Abstract: As the energy terminal of the Energy Internet, the model of we-energy is the basis for energy Internet optimization and dispatch. To solve the modeling problem of We-energy, this paper proposed a non-intrusive modeling method based on generative adversarial networks(GAN). First, considering the energy generation characteristics of wind turbines, photovoltaics, energy storages and coupling equipments, the non-intrusive monitoring for We-energy was realized by joint sliding and gradient separation. Furthermore, combined with the generation capacity and discrimination capacity of generation adversarial network, the improved GAN was used to deal with the time-asynchronous problem of electricity-gas-thermal data, and to classify and identify energy equipments. And a dispatching model for We-energy was established according to equipment classification. Finally, the effectiveness and accuracy of the proposed method were verified by the simulation of an energy region in the north.

     

/

返回文章
返回