李蔚, 吴恺逾, 陈坚红, 鲍旭东, 蔡超, 胡跃华, 盛德仁. 基于非线性自回归神经网络和随机森林算法的核电汽轮机组出力优化[J]. 中国电机工程学报, 2021, 41(2): 409-415. DOI: 10.13334/j.0258-8013.pcsee.200761
引用本文: 李蔚, 吴恺逾, 陈坚红, 鲍旭东, 蔡超, 胡跃华, 盛德仁. 基于非线性自回归神经网络和随机森林算法的核电汽轮机组出力优化[J]. 中国电机工程学报, 2021, 41(2): 409-415. DOI: 10.13334/j.0258-8013.pcsee.200761
LI Wei, WU Kaiyu, CHEN Jianhong, BAO Xudong, CAI Chao, HU Yuehua, SHENG Deren. Output Optimization of Nuclear Power Steam Turbine Based on Nonlinear Autoregressive Neural Network and Random Forest Algorithm[J]. Proceedings of the CSEE, 2021, 41(2): 409-415. DOI: 10.13334/j.0258-8013.pcsee.200761
Citation: LI Wei, WU Kaiyu, CHEN Jianhong, BAO Xudong, CAI Chao, HU Yuehua, SHENG Deren. Output Optimization of Nuclear Power Steam Turbine Based on Nonlinear Autoregressive Neural Network and Random Forest Algorithm[J]. Proceedings of the CSEE, 2021, 41(2): 409-415. DOI: 10.13334/j.0258-8013.pcsee.200761

基于非线性自回归神经网络和随机森林算法的核电汽轮机组出力优化

Output Optimization of Nuclear Power Steam Turbine Based on Nonlinear Autoregressive Neural Network and Random Forest Algorithm

  • 摘要: 针对国内某核电站夏季工况出力不足的问题,提出一种基于非线性自回归神经网络和随机森林算法优化核电汽轮机组出力的方法。非线性自回归神经网络能实现季节性时间序列的准确预测;随机森林算法对异常值不敏感、具有较强的泛化能力,被广泛应用于分类和回归问题。文中应用非线性自回归神经网络建立海水温度时间序列预测模型,应用随机森林算法建立海水温度和电功率设定值对高压调节阀开度和热功率的影响关系的回归模型,将2个模型相结合,获得未来24 h的电功率设定值优化曲线,机组运行人员可根据该优化曲线调整机组出力。通过该核电站的历史运行数据,验证了该方法的有效性,采用电功率设定值优化曲线设定机组出力,将在保证机组运行参数不超限的情况下,有效提升机组的夏季出力,提升机组经济性。

     

    Abstract: In order to solve the problem of insufficient output of a nuclear power plant in summer in China, a method for optimizing the output of nuclear power steam turbine based on nonlinear autoregressive neural network and random forest algorithm was proposed. Nonlinear autoregressive neural network can achieve accurate prediction of seasonal time series. Random forest algorithm is not sensitive to outliers and has strong generalization ability, which is widely used in classification and regression problems. The nonlinear autoregressive neural network was used to establish a seawater temperature time series prediction model, and the random forest algorithm is used to establish a regression model of the relationship between the seawater temperature and electric power set value on the opening of the high-pressure regulating valve and heat power. The two models were combined to obtain the optimized curve of the electric power set value in the next 24 h, and the unit operator can adjust the output of the unit according to the optimized curve. Through the historical data of the nuclear power plant, the effectiveness of the method was verified. Using the electric power set value optimization curve to set the unit output will effectively increase the unit output in summer and improve the unit economy under the condition that the unit operating parameters are not exceeded.

     

/

返回文章
返回