孔祥玉, 张烜墉, 王成山, 李鹏, 于力, 江晓东. 复杂形态下的配电网自适应自趋优状态估计方法[J]. 中国电机工程学报, 2021, 41(10): 3339-3348. DOI: 10.13334/j.0258-8013.pcsee.200682
引用本文: 孔祥玉, 张烜墉, 王成山, 李鹏, 于力, 江晓东. 复杂形态下的配电网自适应自趋优状态估计方法[J]. 中国电机工程学报, 2021, 41(10): 3339-3348. DOI: 10.13334/j.0258-8013.pcsee.200682
KONG Xiangyu, ZHANG Xuanyong, WANG Chengshan, LI Peng, YU Li, JIANG Xiaodong. Adaptive Self-optimizing State Estimation Method of Distribution Network in Complex Condition[J]. Proceedings of the CSEE, 2021, 41(10): 3339-3348. DOI: 10.13334/j.0258-8013.pcsee.200682
Citation: KONG Xiangyu, ZHANG Xuanyong, WANG Chengshan, LI Peng, YU Li, JIANG Xiaodong. Adaptive Self-optimizing State Estimation Method of Distribution Network in Complex Condition[J]. Proceedings of the CSEE, 2021, 41(10): 3339-3348. DOI: 10.13334/j.0258-8013.pcsee.200682

复杂形态下的配电网自适应自趋优状态估计方法

Adaptive Self-optimizing State Estimation Method of Distribution Network in Complex Condition

  • 摘要: 实际工程中,配电网通常存在量测不足、可观性差、通信薄弱、网络模型质量差等现象。该文面向形态复杂多变的配电网络,提出一种自适应自趋优状态估计方法。该方法结合静态状态估计与动态状态估计,由多个模块构成。所开发模块分别适用于量测冗余环境、仅高频量测刷新环境以及数据缺失导致的不可观环境。首先对配电网数据环境进行时空分析,明确当前状态估计的首要任务,从而驱动对应的估计模块适时启动。利用IEEE标准算例的仿真分析结果表明,该方法在量测冗余环境下实现高精度状态估计的同时,可对网络参数的错误进行识别与修正;高频量测可对配电网部分区域的运行状态进行快速跟踪;在量测缺失环境下,鲁棒估计恢复算法收敛,并可最大化保持估计精度。

     

    Abstract: In practical engineering, the distribution network always suffers from insufficient measurements, poor observability, weak communication and low quality of network model. Aiming at the problems, an adaptive self-optimizing state estimation method for complex and changeable distribution network was proposed. This method combined static state estimation with dynamic state estimation and consisted of several modules which were respectively suitable for redundant measurements, only high-frequency measurements refreshing and unobservable environment caused by data loss. In this method, the spatial-temporal analysis of the data environment was firstly implemented to clarify the primary task of current state estimation, so as to adaptively decide the start of the corresponding estimation module. The simulation results based on IEEE system verify that the high-precision state estimation is realized and the errors of network parameters are identified and corrected in measurement redundancy. The state of part of distribution network is tracked in real time with the help of the high-frequency measurements. In the case of missing data, the algorithm convergence is restored and the estimation accuracy is maintained at the same time.

     

/

返回文章
返回