赵庆, 陶志强, 唐豪杰, 吴家桦, 周勇, 孙玉伟. 超临界二氧化碳循环系统工艺参数设计研究[J]. 中国电机工程学报, 2020, 40(11): 3557-3566. DOI: 10.13334/j.0258-8013.pcsee.191808
引用本文: 赵庆, 陶志强, 唐豪杰, 吴家桦, 周勇, 孙玉伟. 超临界二氧化碳循环系统工艺参数设计研究[J]. 中国电机工程学报, 2020, 40(11): 3557-3566. DOI: 10.13334/j.0258-8013.pcsee.191808
ZHAO Qing, TAO Zhi-qiang, TANG Hao-jie, WU Jia-hua, ZHOU Yong, SUN Yu-wei. Process Parameter Design Study for Supercritical Carbon Dioxide Cycle System[J]. Proceedings of the CSEE, 2020, 40(11): 3557-3566. DOI: 10.13334/j.0258-8013.pcsee.191808
Citation: ZHAO Qing, TAO Zhi-qiang, TANG Hao-jie, WU Jia-hua, ZHOU Yong, SUN Yu-wei. Process Parameter Design Study for Supercritical Carbon Dioxide Cycle System[J]. Proceedings of the CSEE, 2020, 40(11): 3557-3566. DOI: 10.13334/j.0258-8013.pcsee.191808

超临界二氧化碳循环系统工艺参数设计研究

Process Parameter Design Study for Supercritical Carbon Dioxide Cycle System

  • 摘要: 利用Ebsilon软件建立超临界二氧化碳再压缩布雷顿循环系统计算模型,完成百kW功率等级系统的工艺参数设计计算,通过对计算结果的分析,深入探究系统工艺参数对系统发电效率、低温回热器和高温回热器换热系数与换热面积乘积(KA)的影响。主压缩机入口温度和入口压力存在合理组合范围,以保证发电效率较高且低温/高温回热器KA较小。主压缩机入口温度增加,适宜选取的主压缩机入口压力也增加。研究发现,在上述组合范围内,主压缩机入口温度一定时,不同主压缩机入口压力下发电效率随分流系数变化的曲线存在近似相交点,当分流系数小于该交点值,主压缩机入口压力越接近临界压力,发电效率越高;当分流系数大于该交点值,主压缩机入口压力越远离临界压力,发电效率越高;该分流系数随透平入口温度增大而增大。相同分流系数(小于上述分流系数交点值)时,发电效率变化幅度与主压缩机入口压力的关联程度随主压缩机入口温度的增大而逐渐减小。主压缩机入口压力一定时,低温回热器KA随分流系数增加的变化趋势与主压缩机入口压力本身取值有关,高温回热器KA随分流系数的增加而增加。分流系数一定时,主压缩机入口压力越大,低温/高温回热器KA越大。

     

    Abstract: System models were established with Ebsilon software for the supercritical carbon dioxide recompression brayton cycle, and the process parameter design of the hundreds kW power cycle system was completed. Through analysis of calculation results, system process parameters were deeply explored to study the impact upon system power generation efficiency, product of the heat transfer coefficient and heat transfer area(KA) of the low temperature regenerator and the high temperature regenerator. There are reasonable combinations of the main compressor inlet temperature and inlet pressure to ensure high power generation efficiency and low KA. As the main compressor inlet temperature increases, the suitable main compressor inlet pressure also increases. Within this range, when the main compressor inlet temperature is constant, there is an approximate intersection point between curves of power generation efficiency with the split ratio of different main compressor inlet pressures. Classically, when the split ratio is less than this specific value, the closer the main compressor inlet pressure is to the critical pressure, the higher the system power generation efficiency is. When the split ratio is greater than this specific value, the farther the main compressor inlet pressure is from the critical pressure, the higher the system’s power generation efficiency is. The specific split ratio increases as the turbine inlet temperature increases. At the same split ratio(less than the specific split ratio), the correlation between the change range of the power generation efficiency and the main compressor inlet pressure gradually decreases as the main compressor inlet temperature increases. When the main compressor inlet pressure is constant, the way of how the low-temperature regenerator KA changing with the split ratio is determined by the main compressor inlet pressure and the high-temperature regenerator KA increases with the split ratio. With the same split ratio, the larger the main compressor inlet pressure is, the larger the low temperature regenerator and the high temperature regenerator KA are.

     

/

返回文章
返回