杨燕, 杨知方, 余娟, 向明旭, 余红欣, 王洪彬. 基于深度学习的含不确定性N-1安全校核方法[J]. 中国电机工程学报, 2021, 41(8): 2716-2724. DOI: 10.13334/j.0258-8013.pcsee.191601
引用本文: 杨燕, 杨知方, 余娟, 向明旭, 余红欣, 王洪彬. 基于深度学习的含不确定性N-1安全校核方法[J]. 中国电机工程学报, 2021, 41(8): 2716-2724. DOI: 10.13334/j.0258-8013.pcsee.191601
YANG Yan, YANG Zhifang, YU Juan, XIANG Mingxu, YU Hongxin, WANG Hongbin. Fast Analysis of N-1 Contingency Screening With Uncertainty Scenarios Based on Deep Learning[J]. Proceedings of the CSEE, 2021, 41(8): 2716-2724. DOI: 10.13334/j.0258-8013.pcsee.191601
Citation: YANG Yan, YANG Zhifang, YU Juan, XIANG Mingxu, YU Hongxin, WANG Hongbin. Fast Analysis of N-1 Contingency Screening With Uncertainty Scenarios Based on Deep Learning[J]. Proceedings of the CSEE, 2021, 41(8): 2716-2724. DOI: 10.13334/j.0258-8013.pcsee.191601

基于深度学习的含不确定性N-1安全校核方法

Fast Analysis of N-1 Contingency Screening With Uncertainty Scenarios Based on Deep Learning

  • 摘要: N-1安全校核是保证系统安全的重要分析工具。为应对日益增长的不确定性对电力系统运行的影响,N-1安全校核除计及支路开断外还需考虑新能源波动等不确定性场景,这导致N-1安全校核面临新的计算挑战。对此,从特征向量构造及学习策略设计两方面入手,提出基于深度学习技术的N-1快速校核方法。该方法构造表征电力系统源荷变化及拓扑结构变化的特征向量,由此建立直流潮流的深度神经网络模型来挖掘直流潮流方程输入输出间的复杂特征。其次,考虑N-1安全校核的潮流分布存在孤立点,从数据预处理、激活函数设计等方面入手设计一套适用于N-1安全校核的深度学习策略。训练后的深度神经网络能够适用于新的不确定性场景(如N-1拓扑变化和新能源波动等),并且通过矩阵计算可直接映射出所有场景下的潮流结果,加快N-1安全校核速度。最后,采用接入新能源的IEEE 30节点和IEEE 118节点系统进行仿真计算,验证了所提方法的有效性。

     

    Abstract: The N-1 contingency screening is a significant tool to secure power systems. To consider the impact of increasing uncertainty on power system operation, the N-1 contingency screening should analyze the system states with a large number of uncertain scenarios and contingency screening. It makes the calculation of the N-1 contingency screening highly challenging. An efficient method based on deep learning techniques was proposed in this paper to solve this problem, from the flowing two aspects: feature vector construction and learning strategy design. This paper constructed feature vectors representing the variations of source, load, and topology in power systems, and thus established the deep neural network-based DC power flow model. Considering that there are some outliers in the power flow of the N-1 contingency screening, a deep learning strategy focusing on the data-preprocessing method and activation function was proposed for the N-1 contingency screening. After training, the deep neural network-based DC power flow model is capable to solve the power flow of different unseen uncertainty and contingency scenarios. Besides, it can map the results of all the needed analyzed scenarios by matrix multiplier, which can accelerate the calculation speed of N-1 contingency screening with uncertainty scenarios. Finally, the effectiveness of the proposed method was verified in the modified IEEE 39 and IEEE 118 systems.

     

/

返回文章
返回