桑博, 张涛, 刘亚杰, 刘陵顺, 朱骏杰, 王锐. 期望场景下的并网型微电网两阶段鲁棒优化调度[J]. 中国电机工程学报, 2020, 40(19): 6161-6173. DOI: 10.13334/j.0258-8013.pcsee.191326
引用本文: 桑博, 张涛, 刘亚杰, 刘陵顺, 朱骏杰, 王锐. 期望场景下的并网型微电网两阶段鲁棒优化调度[J]. 中国电机工程学报, 2020, 40(19): 6161-6173. DOI: 10.13334/j.0258-8013.pcsee.191326
SANG Bo, ZHANG Tao, LIU Ya-jie, LIU Ling-shun, ZHU Jun-jie, WANG Rui. Two-stage Robust Optimal Scheduling of Grid-connected Microgrid Under Expected Scenarios[J]. Proceedings of the CSEE, 2020, 40(19): 6161-6173. DOI: 10.13334/j.0258-8013.pcsee.191326
Citation: SANG Bo, ZHANG Tao, LIU Ya-jie, LIU Ling-shun, ZHU Jun-jie, WANG Rui. Two-stage Robust Optimal Scheduling of Grid-connected Microgrid Under Expected Scenarios[J]. Proceedings of the CSEE, 2020, 40(19): 6161-6173. DOI: 10.13334/j.0258-8013.pcsee.191326

期望场景下的并网型微电网两阶段鲁棒优化调度

Two-stage Robust Optimal Scheduling of Grid-connected Microgrid Under Expected Scenarios

  • 摘要: 可再生能源的发电功率与负载使用情况的不确定性是影响微电网能量优化调度的重要因素,在把这些不确定性信息用区间表示的前提下,研究人员提出了基于最劣场景的两阶段鲁棒优化方法。考虑到这些不确定性因素的预测信息在每个时段都处于最劣值的可能性极小,而绝大多数情况下处于期望值附近,为提高系统运行的经济效益,该文提出一种基于期望场景的两阶段微电网鲁棒优化调度模型:以期望场景下系统经济性为优化目标来确定第一阶段(预调度阶段)决策结果,并确保即使在最劣场景下,基于所确定的第一阶段决策变量也能得到可行的第二阶段(再调度阶段)决策结果,从而达到"期望最优,最劣可行"的系统优化目标。采用两阶段零和博弈思想对模型进行了初步转换,在此基础上提出了一种改进的列和约束生成算法求解预调度阶段鲁棒可行解。实验表明,相比于经典的基于最劣场景下的两阶段鲁棒优化调度模型,所提出的基于期望场景下的模型不仅可在不确定区间内稳定运行,而且其系统运行成本更低。

     

    Abstract: Uncertainty of renewable energy generation power and load usage is an important factor affecting the optimal dispatch of microgrid energy. On the premise that these uncertainties are expressed by intervals, researchers proposed a two-stage robust optimization method based on the worst scenario. Considering the probability of these uncertainties prediction information will be at the worst value in each period is very small, and in most cases these will be near the expected value, a two-stage robust optimal dispatching model for microgrid based on the expected scenario was proposed to improve the economic efficiency of the system operation: it aims to determine the first stage(pre-scheduling stage) decision-making results for the optimization objective of system economy in the expected scenario, and to ensure that the feasible second stage(re-scheduling stage) decision-making results can be obtained even in the worst scenario based on the determined decision variables in the first stage, so as to achieve the "expected optimal, worst feasible" goal of system optimization. Based on the two-stage zero-sum game theory, an improved column and constraint generation(C&CG) algorithm was proposed. Experiments show that compared with the classical two-stage robust optimal scheduling model based on worst-case scenario, the proposed model based on expected scenario can not only run steadily in uncertain intervals, but also has lower operating cost.

     

/

返回文章
返回