韩佶, 苗世洪, 李力行, 杨炜晨, 李姚旺. 基于多视角迁移学习的风场内机群划分及等值风场参数综合优化[J]. 中国电机工程学报, 2020, 40(15): 4866-4881. DOI: 10.13334/j.0258-8013.pcsee.190952
引用本文: 韩佶, 苗世洪, 李力行, 杨炜晨, 李姚旺. 基于多视角迁移学习的风场内机群划分及等值风场参数综合优化[J]. 中国电机工程学报, 2020, 40(15): 4866-4881. DOI: 10.13334/j.0258-8013.pcsee.190952
HAN Ji, MIAO Shi-hong, LI Li-xing, YANG Wei-chen, LI Yao-wang. Wind Turbines Clustering in Wind Farm Based on Multi-view Transfer Learning and Synthetic Optimization of Parameters in Equivalent Wind Farm[J]. Proceedings of the CSEE, 2020, 40(15): 4866-4881. DOI: 10.13334/j.0258-8013.pcsee.190952
Citation: HAN Ji, MIAO Shi-hong, LI Li-xing, YANG Wei-chen, LI Yao-wang. Wind Turbines Clustering in Wind Farm Based on Multi-view Transfer Learning and Synthetic Optimization of Parameters in Equivalent Wind Farm[J]. Proceedings of the CSEE, 2020, 40(15): 4866-4881. DOI: 10.13334/j.0258-8013.pcsee.190952

基于多视角迁移学习的风场内机群划分及等值风场参数综合优化

Wind Turbines Clustering in Wind Farm Based on Multi-view Transfer Learning and Synthetic Optimization of Parameters in Equivalent Wind Farm

  • 摘要: 为提高等值风场模型精度和多场景适用性,提出一种基于多视角迁移学习的风场内机群划分方法,构建了等值风场参数综合优化模型,并采用高维多目标进化优化算法对模型进行求解。首先,将风机出口有功功率、无功功率、电压和电流的多尺度熵(multi-scale entropy,MSE)作为机群划分指标,并分析了多视角指标在机群划分中的适用性;其次,为减少机群划分次数,以提高等值风场的多场景适用性,将多视角模糊C均值(multi-view fuzzy C means,MV-FCM)聚类与迁移学习有机结合,提出一种新的聚类算法——多视角迁移模糊C均值(multi-viewtransferfuzzyCmeans,MVT-FCM)算法,用于机群划分;接下来,为进一步提高等值风场仿真精度,综合考虑有功功率、无功功率、电压和电流的等值准确性,将等值风场参数计算转化为高维多目标优化问题,并采用膝点驱动的进化算法(kneepoint-driven evolutionary algorithm,Kn EA)进行求解;最后,对含16风机风场、某地区实际风场以及某风电汇集区域分别进行算例分析,结果验证了等值风场模型的精确性和多场景适用性。

     

    Abstract: To ensure the multi-scenario applicability of equivalent wind farm(WF) model, this paper proposes a wind turbines(WTs) clustering method based on multi-view transfer learning, and construct an optimization model of equivalent WF parameters, and solve it by high-dimensional multi-objective evolutionary optimization algorithm. Firstly, multi-scale entropy(MSE) of active power, reactive power, voltage and current of WT is used as the clustering indicator, and the applicability of multi-view indicators in clustering WTs is analyzed. To improve the multi-scenario applicability of the equivalent WF model, and taking into account the multi-view characteristics of the clustering indicator, multi-view fuzzy C means(MV-FCM) clustering and transfer learning are combined. A new clustering algorithm, multi-view transfer fuzzy C means(MVT-FCM) clustering algorithm is proposed for clustering WTs. Next, considering the equivalence precision of active power, reactive power, voltage and current, the equivalent WF parameter calculation is transformed into high-dimensional multi-objective optimization problem, and the knee point-driven evolutionary algorithm(KnEA) is adopted to solve it. Finally, a case study of 16 WTs in WF and an actual WF in a certain area is carried out. The results verify the accuracy and multi-scenario applicability of the WF equivalent model.

     

/

返回文章
返回