张栋, 范涛, 温旭辉, 宁圃奇, 李磊, 邰翔, 李晔, 段卓琳, 何国林, 张少昆, 郑丹. 电动汽车用高功率密度碳化硅电机控制器研究[J]. 中国电机工程学报, 2019, 39(19): 5624-5634,5890. DOI: 10.13334/j.0258-8013.pcsee.190734
引用本文: 张栋, 范涛, 温旭辉, 宁圃奇, 李磊, 邰翔, 李晔, 段卓琳, 何国林, 张少昆, 郑丹. 电动汽车用高功率密度碳化硅电机控制器研究[J]. 中国电机工程学报, 2019, 39(19): 5624-5634,5890. DOI: 10.13334/j.0258-8013.pcsee.190734
ZHANG Dong, FAN Tao, WEN Xu-hui, NING Pu-qi, LI Lei, TAI Xiang, LI Ye, DUAN Zhuo-lin, HE Guo-lin, ZHANG Shao-kun, ZHENG Dan. Research on High Power Density SiC Motor Drive Controller[J]. Proceedings of the CSEE, 2019, 39(19): 5624-5634,5890. DOI: 10.13334/j.0258-8013.pcsee.190734
Citation: ZHANG Dong, FAN Tao, WEN Xu-hui, NING Pu-qi, LI Lei, TAI Xiang, LI Ye, DUAN Zhuo-lin, HE Guo-lin, ZHANG Shao-kun, ZHENG Dan. Research on High Power Density SiC Motor Drive Controller[J]. Proceedings of the CSEE, 2019, 39(19): 5624-5634,5890. DOI: 10.13334/j.0258-8013.pcsee.190734

电动汽车用高功率密度碳化硅电机控制器研究

Research on High Power Density SiC Motor Drive Controller

  • 摘要: 碳化硅(Siliconcarbide,SiC)作为世界公认的替代硅(Silicon,Si)的下一代半导体材料,具有耐压高、开关速度快、开关损耗小的优势,是实现车用电机控制器功率密度提升的关键要素。该文针对构成SiC控制器的关键部件,研究SiC金属氧化物场效应晶体管(metal-oxide-semiconductor field-effect transistor,MOSFET)模块、直流支撑电容器、控制和驱动电路以及电磁干扰(electro-magneticInterference,EMI)滤波器的设计方法。在SiC模块方面,研究多芯片并联结构MOSFET的布局评价体系,以此为基础设计包含72个SiC芯片的SiC MOSFET模块。在直流支撑电容器方面,以减小电容器体积为目标,结构上与控制器壳体统一设计,电气参数上建立描述电机系统性能与电容器容值及许用纹波电流关系的数学模型,优选最为合适的参数,减小电容器体积。在控制和驱动电路方面,通过采用非隔离电源系统、多层电路板等手段,减小电子系统的电路面积,开发出仅信用卡大小的超紧凑主控板和能够与SiC模块直接插接的紧凑型驱动板。在EMI滤波器方面,提出滤波器拓扑和滤波元件参数同步设计方法,有助于解决EMI滤波器设计中反复试验迭代和过设计的问题。基于上述研究成果,开发出峰值功率85kW,开关频率20k Hz,最高效率98.6%,功率密度37.1kW/L的全SiC电机驱动控制器。

     

    Abstract: As the world’s recognized next-generation semiconductor that will replace Si material, Silicon carbide(SiC) has advantages of high voltage rating, fast switching speed, and low switching loss. It is the key factor to realize the power density improvement of automotive motor controllers. In this paper, the design methods of SiC metal-oxidesemiconductor field-effect transistor(MOSFET) module, DC-link capacitor, control and drive circuit, and electromagnetic interference(EMI) filter, as key components in a SiC controller, are discussed. In terms of the SiC module, the layout evaluation system of multi-chip parallel structure MOSFET was studied. Based on this, a SiC MOSFET module including 72 SiC chips was developed. For DC-link capacitor, in order to reduce the volume, its frame was designed simultaneously with the controller housing. Also, its electrical parameters were delicately selected based on mathematical models describing the relationship between the motor system performance and the capacitance as well as the allowable ripple current of the capacitor. In terms of control and drive circuits, the circuit area of the electronic system was reduced by means of non-isolated power supply systems, multi-layer printed circuit boards, etc. An ultra-compact credit-card-sized control board and a compact drive board which can be directly mounted onto the SiC module were developed. For the EMI filter, a synchronization design method of filter topology and components parameters was proposed to solve the problem of repeated trail-and-procedure and to avoid over design. Based on the above research results, a full SiC motor drive controllerwith 85 kW peak power, 20 kHz switching frequency, 98.6% maximum efficiency, and 37.1 kW/L power density was developed.

     

/

返回文章
返回