杨茂, 周宜. 计及风电场状态的风电功率超短期预测[J]. 中国电机工程学报, 2019, 39(5): 1259-1268. DOI: 10.13334/j.0258-8013.pcsee.180873
引用本文: 杨茂, 周宜. 计及风电场状态的风电功率超短期预测[J]. 中国电机工程学报, 2019, 39(5): 1259-1268. DOI: 10.13334/j.0258-8013.pcsee.180873
YANG Mao, ZHOU Yi. Ultra-short-term Prediction of Wind Power Considering Wind Farm Status[J]. Proceedings of the CSEE, 2019, 39(5): 1259-1268. DOI: 10.13334/j.0258-8013.pcsee.180873
Citation: YANG Mao, ZHOU Yi. Ultra-short-term Prediction of Wind Power Considering Wind Farm Status[J]. Proceedings of the CSEE, 2019, 39(5): 1259-1268. DOI: 10.13334/j.0258-8013.pcsee.180873

计及风电场状态的风电功率超短期预测

  • 摘要: 风电功率的随机波动性是风电功率预测精度提高的瓶颈问题。一方面,风速的波动性使得风电功率是波动的;另一方面,风电场将风能转化为电能的能力也会在一定程度上造成风电功率波动。该文首先分析在功率预测中计及风电场状态的必要性,然后利用随机矩阵理论评估风电场状态,以此为基础提出计及风电场状态的风电功率超短期预测方法。算例结果表明,该方法可以有效的提升风电功率超短期预测精度。

     

    Abstract: The random fluctuation of wind power is the bottleneck of the improvement of wind power prediction accuracy. On the one hand, the volatility of wind speed makes the wind power fluctuate; on the other hand, the ability of a wind farm to convert wind energy into electrical energy will also cause wind power fluctuations to some extent. Therefore,this paper first analyzed the necessity of taking into account the status of wind farms in power forecasting, and then uses the random matrix theory to evaluate the status of wind farms.Based on this, a wind power forecasting method was considered based on the state of wind farms. The results of the example show that this method can effectively improve the ultra-short-term prediction accuracy of wind power.

     

/

返回文章
返回