邓惠文, 李奇, 崔幼龙, 陈维荣. 基于多边界层的RNO质子交换膜燃料电池发电系统状态估计研究[J]. 中国电机工程学报, 2019, 39(5): 1532-1543. DOI: 10.13334/j.0258-8013.pcsee.172671
引用本文: 邓惠文, 李奇, 崔幼龙, 陈维荣. 基于多边界层的RNO质子交换膜燃料电池发电系统状态估计研究[J]. 中国电机工程学报, 2019, 39(5): 1532-1543. DOI: 10.13334/j.0258-8013.pcsee.172671
DENG Hui-wen, LI Qi, CUI You-long, CHEN Wei-rong. Research on States Estimation for Proton Exchange Membrane Fuel Cell Generation Systems Based on RNO with Multi-boundary Layer[J]. Proceedings of the CSEE, 2019, 39(5): 1532-1543. DOI: 10.13334/j.0258-8013.pcsee.172671
Citation: DENG Hui-wen, LI Qi, CUI You-long, CHEN Wei-rong. Research on States Estimation for Proton Exchange Membrane Fuel Cell Generation Systems Based on RNO with Multi-boundary Layer[J]. Proceedings of the CSEE, 2019, 39(5): 1532-1543. DOI: 10.13334/j.0258-8013.pcsee.172671

基于多边界层的RNO质子交换膜燃料电池发电系统状态估计研究

Research on States Estimation for Proton Exchange Membrane Fuel Cell Generation Systems Based on RNO with Multi-boundary Layer

  • 摘要: 针对质子交换膜燃料电池(proton exchange membrane fuel cell,PEMFC)发电系统非线性和强耦合的特性,该文提出一种适用于系统状态估计的具有多边界层的鲁棒非线性观测器(robust nonlinear observer,RNO)设计方法,用于估计空气系统的六个状态变量。基于PEMFC系统非线性6阶动态模型,在模型参数具有不确定性和噪声干扰的情况下,采用多个边界层的非线性滑模算法,产生3个非线性误差校正项实时调节系统的输出估计误差,使其满足有限时间收敛特性,并证明了鲁棒非线性观测器的稳定性。通过与传统的滑模观测器(sliding mode observer,SMO)相比较,分析所提出的多边界层鲁棒非线性观测器对6个状态变量的估计精度、收敛性和鲁棒性等方面性能。最后,实验结果表明,所设计的观测器不受系统参数变化、测量噪声及负载扰动的影响,性能明显优于传统的滑模观测器,验证该方法的正确性和有效性。

     

    Abstract: As the proton exchange membrane fuel cell(PEMFC) generation system is nonlinear and strongly coupled,in this paper, a robust nonlinear observer(RNO) with multi-boundary layer was proposed to estimate the six state variables in the PEMFC air-feed system. Based on the sixth-order nonlinear dynamic model of the PEMFC system,the nonlinear sliding mode algorithms with multiple boundary layers were used to generate three nonlinear error correction terms that were used to adjust the output estimation errors of the system and steer them to zero in finite time in the condition of parameter uncertainties and noises, moreover, the stability of RNO was also proved. Meanwhile, the accuracy, convergence property and robustness performance of the RNO with multi-boundary layer for the six states were analyzed and compared with the traditional sliding mode observer(SMO).Finally, experiment results show that the proposed RNO is not affected by the parameter variations, measurement noises and external disturbance, it performs much better than the traditional SMO, the correctness and effectiveness of the proposed method are both verified.

     

/

返回文章
返回