明梦君, 张涛, 王锐, 刘亚杰, 查亚兵. 混合可再生能源系统多目标优化综述[J]. 中国电机工程学报, 2018, 38(10): 2908-2917,3141. DOI: 10.13334/j.0258-8013.pcsee.172642
引用本文: 明梦君, 张涛, 王锐, 刘亚杰, 查亚兵. 混合可再生能源系统多目标优化综述[J]. 中国电机工程学报, 2018, 38(10): 2908-2917,3141. DOI: 10.13334/j.0258-8013.pcsee.172642
MING Mengjun, ZHANG Tao, WANG Rui, LIU Yajie, ZHA Yabing. Review of Multi-objective Optimization for Hybrid Renewable Energy System[J]. Proceedings of the CSEE, 2018, 38(10): 2908-2917,3141. DOI: 10.13334/j.0258-8013.pcsee.172642
Citation: MING Mengjun, ZHANG Tao, WANG Rui, LIU Yajie, ZHA Yabing. Review of Multi-objective Optimization for Hybrid Renewable Energy System[J]. Proceedings of the CSEE, 2018, 38(10): 2908-2917,3141. DOI: 10.13334/j.0258-8013.pcsee.172642

混合可再生能源系统多目标优化综述

Review of Multi-objective Optimization for Hybrid Renewable Energy System

  • 摘要: 随着经济的发展,日益增长的能源需求加速了化石燃料的消耗和温室气体的排放。面对能源和环境的双重压力,发展可再生能源成为世界各国的共识。可再生能源具有可持续、环境友好等优点,但它们也具有不稳定、不可预测以及间歇性等不可避免的缺点。为了克服这些缺点,集成多种能源的混合可再生能源系统被越来越多地关注和应用。在这些系统的规划设计过程中,通常需要考虑多个目标,如成本最小化、供电可靠性高、温室气体排放量最小等,因此需要研究混合可再生能源系统多目标优化方法,协调各个目标使各类能源更好地优势互补。该文对过去到现在的混合可再生能源系统优化技术,尤其是多目标优化方法的运用进行综述,并指出下一步研究方向。

     

    Abstract: In parallel to the developing economy, the increase in the energy demand has accelerated the consumption of fossil fuels and greenhouse gas emissions. Under the dual burden of energy and the environment, the world has achieved the consensus of developing renewable energy resources. These resources have advantages such as sustainability and environmental friendliness, yet they are unavoidably unstable, unpredictable and discontinuous. To resolve these disadvantages, hybrid renewable energy systems(HRESs) integrating more than one type of renewable energy is drawing more attention and application. These systems usually include multiple objectives such as minimizing costs, maximizing reliability or reducing greenhouse gas emissions in the process of planning and designing. Therefore, it is necessary to study the optimization methods for HRES to balance different objectives, thus making various types of energy better complementary. This article reviewed the optimization techniques developed until now to solve this problem, especially the application of multi-objective optimization methods, and points out the direction of future research.

     

/

返回文章
返回