李新利, 李一娇, 卢钢, 闫勇. 基于火焰光谱和特征工程的生物质燃料识别[J]. 中国电机工程学报, 2018, 38(15): 4474-4481,4648. DOI: 10.13334/j.0258-8013.pcsee.171984
引用本文: 李新利, 李一娇, 卢钢, 闫勇. 基于火焰光谱和特征工程的生物质燃料识别[J]. 中国电机工程学报, 2018, 38(15): 4474-4481,4648. DOI: 10.13334/j.0258-8013.pcsee.171984
LI Xinli, LI Yijiao, LU Gang, YAN Yong. Biomass Fuel Identification Based on Flame Spectroscopy and Feature Engineering[J]. Proceedings of the CSEE, 2018, 38(15): 4474-4481,4648. DOI: 10.13334/j.0258-8013.pcsee.171984
Citation: LI Xinli, LI Yijiao, LU Gang, YAN Yong. Biomass Fuel Identification Based on Flame Spectroscopy and Feature Engineering[J]. Proceedings of the CSEE, 2018, 38(15): 4474-4481,4648. DOI: 10.13334/j.0258-8013.pcsee.171984

基于火焰光谱和特征工程的生物质燃料识别

Biomass Fuel Identification Based on Flame Spectroscopy and Feature Engineering

  • 摘要: 火焰光谱包含了丰富的燃烧信息,火焰自由基的光谱特征对不同生物质燃料识别具有重要影响。文中通过生物质燃烧火焰和火焰自由基光谱特征的测量,结合特征工程,提出一种基于改进支持向量机的生物质燃料识别技术。该技术通过光纤光谱仪获得生物质火焰辐射强度和火焰自由基(OH*(310.85nm),CN*(390.00nm),CH*(430.57nm)和C2*(515.23nm、545.59nm))辐射强度信号,通过特征提取、基于Filter的特征选择和基于字典学习的特征学习,构建特征工程,获得能够准确反应样本类别的特征,并结合改进的网格搜索算法优化支持向量机的径向基核参数γ和误差惩罚因子C,建立生物质燃料识别模型。在燃烧试验炉上的实验结果验证了该模型的有效性。

     

    Abstract: Flame spectra contain useful information about combustion and hence the spectral features of flame radicals may be used to identify different biomass fuels. A technique for biomass fuel identification was proposed based on the spectral features of flame radicals, feature engineering and improved support vector machine. The spectral intensity signals of biomass flames and flame radicals(OH*(310.85 nm), CN*(390.00 nm), CH*(430.57 nm) and C2*(515.23 nm, 545.59 nm)) were acquired using a spectrometer. Feature engineering was built, which can accurately reflect the characteristics of sample category, through feature extraction, feature selection based on Filter and feature learning based on dictionary learning. The support vector machine was used to build the identification model, where radial basis kernel parameter γ and error penalty factor C are optimized using an improved grid search algorithm. Experimental results from a laboratory-scale combustion rig show the effectiveness of the proposed method for the identification of biomass fuel.

     

/

返回文章
返回