贾清泉, 赵美超, 孙玲玲, 杜广玉, 范君, 孙海东. 主动配电网中计及时序性与相关性的分布式光伏并网规划[J]. 中国电机工程学报, 2018, 38(6): 1719-1728,1908. DOI: 10.13334/j.0258-8013.pcsee.170782
引用本文: 贾清泉, 赵美超, 孙玲玲, 杜广玉, 范君, 孙海东. 主动配电网中计及时序性与相关性的分布式光伏并网规划[J]. 中国电机工程学报, 2018, 38(6): 1719-1728,1908. DOI: 10.13334/j.0258-8013.pcsee.170782
JIA Qing-quan, ZHAO Mei-chao, SUN Ling-ling, DU Guang-yu, FAN Jun, SUN Hai-dong. Planning for Grid-connection of Distributed PVs Considering the Sequential Feature and Correlation in Active Distribution Network[J]. Proceedings of the CSEE, 2018, 38(6): 1719-1728,1908. DOI: 10.13334/j.0258-8013.pcsee.170782
Citation: JIA Qing-quan, ZHAO Mei-chao, SUN Ling-ling, DU Guang-yu, FAN Jun, SUN Hai-dong. Planning for Grid-connection of Distributed PVs Considering the Sequential Feature and Correlation in Active Distribution Network[J]. Proceedings of the CSEE, 2018, 38(6): 1719-1728,1908. DOI: 10.13334/j.0258-8013.pcsee.170782

主动配电网中计及时序性与相关性的分布式光伏并网规划

  • 摘要: 该文提出一种主动配电网中计及时序性与相关性的分布式光伏长短期规划-运行双层机会约束优化模型。下层短期模型考虑了每个时段内主动配电网运行优化从而决定最佳主动管理策略,上层长期规划以下层短期优化为基础,考虑主动配电网整个规划阶段年综合经济成本最优从而决定光伏安装位置与容量。针对光伏与负荷之间相关性、概率分布时序差异性特点,提出改进相关矩阵法与拉丁超立方技术相结合的方法,并利用该方法通过划分时段对光伏与负荷的出力进行时序相关性处理。在此基础上,采用概率潮流法与嵌套的模拟退火粒子群算法(simulated annealing particle swarm optimization,SAPSO)相结合的混合智能算法对上述模型进行求解。选取IEEE33系统进行算例分析,仿真结果验证所提方法的合理性与有效性。

     

    Abstract: A long and short term planning-running double-layer chance constrained optimization model was proposed for grid connection of distributed photovoltaics(PVs) considering the sequential feature and correlations in active distribution network.The lower short-term model considers operation optimization of the active distribution network in each period to determine the best active management strategy.The upper long-term planning was based on the lower short-term optimization and takes into account the overall economic efficiency of the active distribution network in the whole planning stage to determine the location and capacity of the PVs installation.An improved correlation matrix method with the latin hypercube technique was proposed for describing the correlations as well as the sequential probability distribution differences between PVs and loads,and for dealing with sequential feature and correlation of PVs and loads by time division.Mixed intelligent algorithm combining probabilistic power flow method and nested simulated annealing particle swarm optimization(SAPSO) was employed to solve the established model.The IEEE33 system was selected for example,and the simulation results verify the rationality and validity of the proposed method.

     

/

返回文章
返回