张琪鑫, 徐章洋, 冯萍, 涂洁磊. 基于机器学习的卤化物双钙钛矿材料性能预测[J]. 太阳能学报, 2024, 45(4): 107-115. DOI: 10.19912/j.0254-0096.tynxb.2023-1794
引用本文: 张琪鑫, 徐章洋, 冯萍, 涂洁磊. 基于机器学习的卤化物双钙钛矿材料性能预测[J]. 太阳能学报, 2024, 45(4): 107-115. DOI: 10.19912/j.0254-0096.tynxb.2023-1794
Zhang Qixin, Xu Zhangyang, Feng Ping, Tu Jielei. PERFORMANCE PREDICTION OF HALIDE DOUBLE PEROVSKITE MATERIALS BASED ON MACHINE LEARNING[J]. Acta Energiae Solaris Sinica, 2024, 45(4): 107-115. DOI: 10.19912/j.0254-0096.tynxb.2023-1794
Citation: Zhang Qixin, Xu Zhangyang, Feng Ping, Tu Jielei. PERFORMANCE PREDICTION OF HALIDE DOUBLE PEROVSKITE MATERIALS BASED ON MACHINE LEARNING[J]. Acta Energiae Solaris Sinica, 2024, 45(4): 107-115. DOI: 10.19912/j.0254-0096.tynxb.2023-1794

基于机器学习的卤化物双钙钛矿材料性能预测

PERFORMANCE PREDICTION OF HALIDE DOUBLE PEROVSKITE MATERIALS BASED ON MACHINE LEARNING

  • 摘要: 以卤化物双钙钛矿材料为研究对象,利用机器学习方法高速、高精确预测卤化物双钙钛矿材料的带隙和相对稳定性。使用贝叶斯岭回归、梯度提升回归、支持向量回归和XGBoost这4种算法建立模型,分析得出:梯度提升回归可为相对稳定性提供最高性能预测(R2=0.9161,MAE=0.2061),XGBoost可为带隙提供最高性能预测(R2=0.9899,MAE=0.0542);采用SHAP方法解释模型后,对元素替换后的新样本进行筛选,最终获得18种光吸收范围理想且稳定性良好的卤化物双钙钛矿。结果表明,相比传统方法,基于数据驱动的机器学习方法可有效加速功能材料的发现,提高设计效率。

     

    Abstract: Taking halide double perovskite materials as the research object,the machine learning method is used to predict the band gap and relative stability of halide double perovskite materials with high speed and high accuracy. Four distinct algorithms,namely Bayesian ridge regression,gradient boosting regression,support vector regression,and XGBoost,are employed to construct predictive models. The results show that gradient boosting regression can provide the highest performance prediction for relative stability(R~2=0.9161,MAE=0.2061),XGBoost can provide the highest performance prediction for band gap(R~2=0.9899,MAE=0.0542),and after using the SHAP method to explain the model,the new samples after element substitution are screened,and finally 18 halide double perovskites with ideal light absorption range and exceptional stability are obtained. These outcomes indicate that compared with traditional methods,data-driven machine learning can effectively accelerate functiona material discovery and improve design efficiency.

     

/

返回文章
返回