MULTI-STEP WIND SPEED FORECASTING BASED ON VIT AND LSTM
-
摘要: 精确的风速预测对风力发电具有指导作用,据此提出一种多维时间序列下Vision Transformer(ViT)和长短时记忆网络(LSTM)的风速预测方法,实现对风速的超前一步和超前多步预测。结合斯皮尔曼系数(Spearman)和变分模态分解将风速分解为多维时间序列,多维时间序列能更好地表征原始风速的周期性和波动性;采用ViT提取多维时间序列中的特征以及隐藏信息,在保持ViT模型自注意力机制优势的同时,用LSTM进一步建立所提取特征和风速之间的关系,从而提高ViT-LSTM模型的泛化性和预测准确性。使用内蒙古某风场记录的数据进行试验分析,在超前1步、超前6步、超前12步和超前24步预测时,该方法的平均绝对误差分别比LSTM模型减少了15.15%、34.41%、68.32%和81.71%,结果表明该模型在超前多步风速预测方面具有较好的效果。Abstract: Accurate and dependable wind speed forecasting plays a guiding role in wind power generation. A novel wind speed forecasting method combined with Vision Transformer(ViT) and long short-term memory(LSTM) is proposed, which is applied in multidimensional time series for achieving one-step ahead and multi-step ahead wind speed forecasting. Firstly, the wind speed is decomposed into multidimensional time series by combining Spearman’s coefficient and variational mode decomposition(VMD) in order to enhance the ability of forecasting model to capture the periodicity and volatility of the wind speed sequence. And then, ViT is used to extract features and hidden information from multi-dimensional time series. Finally, while maintaining the self-attention mechanism advantage of ViT model, the LSTM component is employed to further establish the relationship between extracted features and wind speed. This approach is particularly effective in handling the time-dependent nature of the data and capturing the correlations between variables, so as to improve the generalization and forecasting accuracy of ViT-LSTM model. The experimental analysis is conducted using data recorded from a wind farm in Inner Mongolia. The proposed method achieved a reduction of 15.15%, 34.41%, 68.32%, and 81.71% in mean absolute error compared to the LSTM model at one-step ahead, six-step ahead, twelve-step ahead and twenty-four-step ahead forecasting, which indicates that the proposed model performs well in multi-step wind speed forecasting.
-
Keywords:
- wind speed /
- forecasting /
- long short-term memory /
- variational mode decomposition /
- ViT
-
[1] 秦海岩.加快发展新能源,支撑落实“双碳”目标[J].可持续发展经济导刊,2021(6):23-25. QIN H Y. Accelerate the development of new energy and support the implementation of the “dual carbon” goals[J].China sustainability tribune, 2021(6):23-25.
[2] 李耀华,孔力.发展太阳能和风能发电技术加速推进我国能源转型[J].中国科学院院刊,2019, 34(4):426-433. LI Y H, KONG L. Developing solar and wind power generation technology to accelerate China’s energy transformation[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(4):426-433.
[3] 贾凌云,云斯宁,赵泽妮,等.神经网络短期光伏发电预测的应用研究进展[J].太阳能学报,2022, 43(12):88-97. JIA L Y, YUN S N, ZHAO Z N, et al. Recent progress of short-term forecasting of photovoltaic generation based on artificial neural networks[J]. Acta energiae solaris sinica,2022, 43(12):88-97.
[4] 赵泽妮,云斯宁,贾凌云,等.基于统计模型的短期风能预测方法研究进展[J].太阳能学报,2022, 43(11):224-234. ZHAO Z N, YUN S N, JIA L Y, et al. Recent progress in short-term forecasting of wind energy based on statistical models[J]. Acta energiae solaris sinica, 2022, 43(11):224-234.
[5] 周念成,廖建权,王强钢,等.深度学习在智能电网中的应用现状分析与展望[J].电力系统自动化,2019, 43(4):180-191. ZHOU N C, LIAO J Q, WANG Q G, et al. Analysis and prospect of deep learning application in smart grid[J].Automation of electric power systems, 2019, 43(4):180-191.
[6] 冉靖,张智刚,梁志峰,等.风电场风速和发电功率预测方法综述[J].数理统计与管理,2020, 39(6):1045-1059. RAN J, ZHANG Z G, LIANG Z F, et al. Review of wind speed and wind power prediction methods[J]. Journal of applied statistics and management, 2020, 39(6):1045-1059.
[7] 向玲,刘佳宁,苏浩,等.基于CEEMDAN二次分解和LSTM的风速多步预测研究[J].太阳能学报,2022, 43(8):334-339. XIANG L, LIU J N, SU H, et al. Research on multi-step wind speed forecast based on CEEMDAN secondary decomposition and LSTM[J]. Acta energiae solaris sinica,2022, 43(8):334-339.
[8] 王华彪,鲁冠军,李小勇.基于卷积和共享权系数长短时记忆网络的空时融合机制在风速预测上的应用研究[J].太阳能学报,2022, 43(11):156-165. WANG H B, LU G J, LI X Y. Research on application of spatio-temporal fusion mechanism based on convolution and shared weight long short-term memory network in wind speed prediction[J]. Acta energiae solaris sinica, 2022,43(11):156-165.
[9] 王俊,李霞,周昔东,等.基于VMD和LSTM的超短期风速预测[J].电力系统保护与控制,2020, 48(11):45-52. WANG J, LI X, ZHOU X D, et al. Ultra-short-term wind speed prediction based on VMD-LSTM[J]. Power system protection and control, 2020, 48(11):45-52.
[10] 潘超,李润宇,蔡国伟,等.考虑风速属性约简聚类的组合预测模型[J].电网技术,2022, 46(4):1355-1362. PAN C, LI R Y, CAI G W, et al. Combined forecasting model considering wind speed attribute reduction and clustering[J]. Power system technology, 2022, 46(4):1355-1362.
[11] 周哲韬,刘路,宋晓,等.基于Transformer模型的滚动轴承剩余使用寿命预测方法[J].北京航空航天大学学报,2023, 49(2):430-443. ZHOU Z T, LIU L, SONG X, et al. Remaining useful life prediction method of rolling bearing based on Transformer model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(2):430-443.
[12] WU H J, MENG K, FAN D, et al. Multistep short-term wind speed forecasting using transformer[J]. Energy,2022, 261:125231.
[13] WANG Y, XU H H, SONG M M, et al. A convolutional Transformer-based truncated Gaussian density network with data denoising for wind speed forecasting[J]. Applied energy, 2023, 333:120601.
[14] SUN S L, LIU Y K, LI Q, et al. Short-term multi-step wind power forecasting based on spatio-temporal correlations and transformer neural networks[J]. Energy conversion and management, 2023, 283:116916.
[15] BENTSEN LØ,WARAKAGODA N D, STENBRO R, et al. Spatio-temporal wind speed forecasting using graph networks and novel Transformer architectures[J]. Applied energy, 2023, 333:120565.
[16] DRAGOMIRETSKIY K, ZOSSO D. Variational mode decomposition[J]. IEEE transactions on signal processing,2014, 62(3):531-544.
[17] 胡艳丽,童谭骞,张啸宇,等.融入自注意力机制的深度学习情感分析方法[J].计算机科学,2022, 49(1):252-258. HU Y L, TONG T Q, ZHANG X Y, et al. Self-attentionbased BGRU and CNN for sentiment analysis[J]. Computer science, 2022, 49(1):252-258.
[18] XIANG L, LIU J N, YANG X, et al. Ultra-short term wind power prediction applying a novel model named SATCNLSTM[J]. Energy conversion and management, 2022,252:115036.
[19] VASWANI A, SHAZEER N, PARMAR N, et al.Attention is all you need[J]. Advances in neural information processing systems, 2017, 30.
[20] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al.An image is worth 16×16 words:transformers for image recognition at scale[J]. arXiv preprint arXiv:2010.11929,2020.
[21] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural computation, 1997, 9(8):1735-1780.
[22] 刘善峰,李哲,陈锦鹏,等.基于误差修正的极端天气下风速预测[J].南京信息工程大学学报(自然科学版),2023, 15(5):574-584. LIU S F, LI Z, CHEN J P, et al. Wind speed prediction in extreme weather based on error correction[J]. Journal of Nanjing University of Information Science&Technology(natural science edition), 2023, 15(5):574-584.
计量
- 文章访问数: 0
- HTML全文浏览量: 0
- PDF下载量: 0