熊国江, 辜再宇. 基于强化学习知识获取共享算法的太阳电池模型参数辨识[J]. 太阳能学报, 2024, 45(9): 334-344. DOI: 10.19912/j.0254-0096.tynxb.2023-0758
引用本文: 熊国江, 辜再宇. 基于强化学习知识获取共享算法的太阳电池模型参数辨识[J]. 太阳能学报, 2024, 45(9): 334-344. DOI: 10.19912/j.0254-0096.tynxb.2023-0758
Xiong Guojiang, Gu Zaiyu. REINFORCEMENT LEARNING-BASED GAINING-SHARING KNOWLEDGE ALGORITHM FOR PARAMETER IDENTIFICATION OF SOLAR CELL MODELS[J]. Acta Energiae Solaris Sinica, 2024, 45(9): 334-344. DOI: 10.19912/j.0254-0096.tynxb.2023-0758
Citation: Xiong Guojiang, Gu Zaiyu. REINFORCEMENT LEARNING-BASED GAINING-SHARING KNOWLEDGE ALGORITHM FOR PARAMETER IDENTIFICATION OF SOLAR CELL MODELS[J]. Acta Energiae Solaris Sinica, 2024, 45(9): 334-344. DOI: 10.19912/j.0254-0096.tynxb.2023-0758

基于强化学习知识获取共享算法的太阳电池模型参数辨识

REINFORCEMENT LEARNING-BASED GAINING-SHARING KNOWLEDGE ALGORITHM FOR PARAMETER IDENTIFICATION OF SOLAR CELL MODELS

  • 摘要: 为准确辨识太阳电池模型参数,提出一种基于强化学习的知识获取共享算法(RLGSK)。针对知识获取共享算法(GSK)初级阶段和高级阶段的选择机制过于死板,处理太阳电池模型参数辨识问题时难以充分平衡全局与局部搜索,存在收敛慢、精度低等问题,一方面,通过强化学习调整迭代时初级和高级阶段的个体比例,实现不同情景下知识获取与共享的灵活调整;另一方面,依靠性能导向的种群规模缩减实现计算资源的高效利用,提高算法性能。将RLGSK应用于5种案例,并与其他算法进行比较。结果表明,与GSK相比,RLGSK的搜索精度、稳定度和收敛速度提升极大,与其他算法相比也有很强的竞争力。

     

    Abstract: A reinforcement learning gaining-sharing knowledge-based algorithm(RLGSK) is proposed to accurately identify the parameters of solar cell models. The selection mechanism of the junior and senior phases of gaining-sharing knowledge-based algorithm(GSK) is too rigid, which makes GSK difficult to fully balance the global and local searches when dealing with the solar cell model parameter identification. Besides, it has some problems such as slow convergence and low accuracy. In this regard, on the one hand, the ratio of individuals in the junior and senior phases during iteration is adjusted by reinforcement learning to achieve flexible adjustment of knowledge gaining and sharing in different scenarios. On the other hand, a performance-oriented population size reduction technique is used to achieve efficient use of computational resources and improve algorithm performance. RLGSK is applied to five cases and compared with other algorithms. The results show that the search accuracy, stability and convergence speed of RLGSK are greatly improved compared to GSK, and it is also very competitive with other algorithms.

     

/

返回文章
返回