王子谋, 黄弦超, 史磊, 柴逸风, 舒隽. 独立储能电站参与电能量和调频市场容量投标的协同优化[J]. 太阳能学报, 2024, 45(9): 630-638. DOI: 10.19912/j.0254-0096.tynxb.2023-0719
引用本文: 王子谋, 黄弦超, 史磊, 柴逸风, 舒隽. 独立储能电站参与电能量和调频市场容量投标的协同优化[J]. 太阳能学报, 2024, 45(9): 630-638. DOI: 10.19912/j.0254-0096.tynxb.2023-0719
Wang Zimou, Huang Xianchao, Shi Lei, Chai Yifeng, Shu Jun. COLLABORATIVE OPTIMIZATION OF INDEPENDENT ENERGY STORAGE POWER STATION'S CAPACITY BIDDIND IN REAL-TIME ENERGY AND REQULATION MARKET[J]. Acta Energiae Solaris Sinica, 2024, 45(9): 630-638. DOI: 10.19912/j.0254-0096.tynxb.2023-0719
Citation: Wang Zimou, Huang Xianchao, Shi Lei, Chai Yifeng, Shu Jun. COLLABORATIVE OPTIMIZATION OF INDEPENDENT ENERGY STORAGE POWER STATION'S CAPACITY BIDDIND IN REAL-TIME ENERGY AND REQULATION MARKET[J]. Acta Energiae Solaris Sinica, 2024, 45(9): 630-638. DOI: 10.19912/j.0254-0096.tynxb.2023-0719

独立储能电站参与电能量和调频市场容量投标的协同优化

COLLABORATIVE OPTIMIZATION OF INDEPENDENT ENERGY STORAGE POWER STATION'S CAPACITY BIDDIND IN REAL-TIME ENERGY AND REQULATION MARKET

  • 摘要: 首先,分别应用多面体不确定集合和基于Wasserstein距离的不确定集合描述调频信号和实时电能量和调频市场价格的不确定性。其次建立独立储能电站参与联合市场的分布式鲁棒优化模型,以协同优化不同市场的申报容量。模型中引入实时调频性能指标以反映调频响应对调频收入、充放电成本以及退化成本的综合影响,从而更好地优化储能的自调度计划。采用拉格朗日对偶法将所建立的分布式鲁棒优化模型转换为经典鲁棒优化模型,并通过去绝对值、构建分段函数等方法进行线性化后调用gurobi求解器进行求解。最后通过算例验证所提优化模型的正确性和有效性。

     

    Abstract: Firstly, the polyhedral uncertainty set and the uncertainty set based on Wasserstein distance are used to describe the uncertainty of regulation signal and real-time energy-regulation market price respectively. Secondly, a distributionally robust optimization model of independent energy storage power stations participating in the joint market is established to collaboratively optimize the declared capacity of different markets. In the model, the real-time frequency regulation performance index is introduced to reflect the comprehensive influence of frequency regulation response on regulation revenue, charge and discharge cost and degradation cost, so as to better optimize the self-scheduling plan of energy storage. Then, the Lagrangian dual method is used to transform the established distributionally robust optimization model into a classical robust optimization model, and the Gurobi solver is used to solve the problem after linearization by removing the absolute value and constructing the piecewise function. Finally, the correctness and effectiveness of the proposed optimization model are verified by an example.

     

/

返回文章
返回