张锐星, 安利强, 何仑, 张颖. 台风风速下风力机风轮流固耦合动力响应特性研究[J]. 太阳能学报, 2024, 45(9): 465-474. DOI: 10.19912/j.0254-0096.tynxb.2023-0694
引用本文: 张锐星, 安利强, 何仑, 张颖. 台风风速下风力机风轮流固耦合动力响应特性研究[J]. 太阳能学报, 2024, 45(9): 465-474. DOI: 10.19912/j.0254-0096.tynxb.2023-0694
Zhang Ruixing, An Liqiang, He Lun, Zhang Ying. STUDY ON DYNAMIC RESPONSE CHARACTERISTICS OF WIND TURBINE ROTOR FLUID-STRUCTURE INTERACTION UNDER TYPHOON WIND SPEED[J]. Acta Energiae Solaris Sinica, 2024, 45(9): 465-474. DOI: 10.19912/j.0254-0096.tynxb.2023-0694
Citation: Zhang Ruixing, An Liqiang, He Lun, Zhang Ying. STUDY ON DYNAMIC RESPONSE CHARACTERISTICS OF WIND TURBINE ROTOR FLUID-STRUCTURE INTERACTION UNDER TYPHOON WIND SPEED[J]. Acta Energiae Solaris Sinica, 2024, 45(9): 465-474. DOI: 10.19912/j.0254-0096.tynxb.2023-0694

台风风速下风力机风轮流固耦合动力响应特性研究

STUDY ON DYNAMIC RESPONSE CHARACTERISTICS OF WIND TURBINE ROTOR FLUID-STRUCTURE INTERACTION UNDER TYPHOON WIND SPEED

  • 摘要: 将改进的流固耦合方法用于不同风速下风力机的载荷和响应特性研究,其准确性得到NREL数据和风力机叶片模态振动实验的验证。与传统的流固耦合方法相比,该方法减少了动网格使用数量、避免负体积网格,提高了计算稳定性,将计算时间缩短约50%。仿真结果表明,将风速由25 m/s提升至35 m/s,叶片的推力和扭矩载荷的波动振幅分别增加了6.8倍和9.8倍。同时,在叶片吸力面发现存在结构屈曲,这与台风现场叶片断裂位置接近,可能是风力机叶片结构在台风环境下的强度薄弱点,同时,在叶片吸力面发现存在结构屈曲,这与台风现场叶片断裂位置接近,是可能的风力机叶片结构在台风环境下的强度薄弱点。

     

    Abstract: High-precision fluid-structure interaction simulation is an effective method for studying the structural reliability of wind turbines under typhoon conditions. However, the substantial computational costs and issues related to negative volume grids significantly affect the efficiency and stability of simulation. In this study, an improved fluid-structure interaction method was applied to investigate the load and response characteristics of wind turbines at different wind spe eds. Its accuracy was validated using NREL data and wind turbine blade modal vibration experiments. Compared to traditional fluid-structure coupling methods, this approach reduces the number of dynamic grids used, avoids negative volume grids, enhances computational stability, and shortens computation time by approximately 50%. Simulation results indicate that increasing the wind speed from 25 m/s to 35 m/s leads to a 6.8-fold increase in fluctuation amplitude for blade thrust and a 9.8-fold increase for torque loads. Additionally, structural buckling was observed on the suction side of the blade, which is close to the location of blade fractures observed in actual typhoon conditions. This may indicate a structural weak point of wind turbine blades under typhoon environments, offering valuable insights for subsequent wind turbine design optimization.

     

/

返回文章
返回