基于改进YOLOX-s算法的航天太阳电池缺陷检测

李振伟, 张仕海, 屈重年, 汝承印, 陈康静

李振伟, 张仕海, 屈重年, 汝承印, 陈康静. 基于改进YOLOX-s算法的航天太阳电池缺陷检测[J]. 太阳能学报, 2024, 45(9): 276-284. DOI: 10.19912/j.0254-0096.tynxb.2023-0673
引用本文: 李振伟, 张仕海, 屈重年, 汝承印, 陈康静. 基于改进YOLOX-s算法的航天太阳电池缺陷检测[J]. 太阳能学报, 2024, 45(9): 276-284. DOI: 10.19912/j.0254-0096.tynxb.2023-0673
Li Zhenwei, Zhang Shihai, Qu Chongnian, Ru Chengyin, Chen Kangjing. DEFECT DETECTION FOR AEROSPACE SOLAR CELLS BASED ON IMPROVED YOLOX-s ALGORITHM[J]. Acta Energiae Solaris Sinica, 2024, 45(9): 276-284. DOI: 10.19912/j.0254-0096.tynxb.2023-0673
Citation: Li Zhenwei, Zhang Shihai, Qu Chongnian, Ru Chengyin, Chen Kangjing. DEFECT DETECTION FOR AEROSPACE SOLAR CELLS BASED ON IMPROVED YOLOX-s ALGORITHM[J]. Acta Energiae Solaris Sinica, 2024, 45(9): 276-284. DOI: 10.19912/j.0254-0096.tynxb.2023-0673

基于改进YOLOX-s算法的航天太阳电池缺陷检测

基金项目: 

天津市自然科学基金面上项目(22JCYBJC01640)

天津市教委科研计划重点项目(2022ZD025)

天津市研究生科研创新项目(2022SKYZ293)

详细信息
    通讯作者:

    张仕海(1977—),男,博士、教授,主要从事智能控制、深度学习等方面的研究。zshky77@163.com

  • 中图分类号: TP18;TP391.41;V442

DEFECT DETECTION FOR AEROSPACE SOLAR CELLS BASED ON IMPROVED YOLOX-s ALGORITHM

  • 摘要: 针对航天太阳电池表面缺陷检测问题,提出基于机器视觉与深度学习的缺陷检测方法。通过航天太阳电池缺陷检测系统获取图像,并依据企业电池片缺陷的分类标准构建航天太阳电池缺陷数据集。采用切片技术获取包含缺陷目标的子图像数据集,解决卷积和下采样操作信息丢失而导致召回率低的问题。针对不同缺陷采取适当的图像增强方式进行扩充数据集,以避免训练过程中因数据集不足导致的过拟合问题。采用深度可分离卷积、优化损失函数、双线性插值上采样及引入注意力机制等方法对YOLOX-s算法进行改进,以获得综合效果最佳的航天太阳电池缺陷检测模型。通过不同数据集训练及检测精度指标对比,以及消融实验验证改进模型的有效性。通过改进模型与同类主流模型对比实验,验证改进模型在航天太阳电池缺陷检测方面的优越性。
    Abstract: Aiming at the problems of defect detection for aerospace solar cells, the machine vision and deep learning are combined to detect the surface defect of solar cells. The aerospace solar cells images are obtained through the vision detection system and the aerospace solar cells defect dataset is constructed according to the enterprise’s defect classification standard. So as to solve the problem of low recall rate caused by information loss of convolution and down sampling, the slicing technique is used to obtain the partial defect images of solar cells and the sub-image dataset is constructed. In order to avoid the overfitting problem caused by insufficient dataset in the model training process, the appropriate image enhancement methods are adopted to expand the dataset for different defects. The YOLOX-s algorithm is improved by using depth wise separable convolution, optimizing the loss function, adopting bilinear interpolation up sampling, and introducing convolutional block attention module, and the best comprehensive defect detection model for aerospace solar cells has been obtained. The effectiveness of the improved model has been verified through comparison of multiple detection accuracy indicators between the models trained by different datasets, as well as ablation experiments. The superiority of the improved model for aerospace solar cells defect detection is verified through comparative experiments between similar mainstream models.
  • [1] 李定海.中国砷化镓太阳能电池的发展研究[J].中国金属通报,2018(2):39.LI D H. Research on the development of GaAs solar cells in China[J]. China metal bulletin, 2018(2):39.
    [2]

    DEITSCH S, CHRISTLEIN V, BERGER S, et al.Automatic classification of defective photovoltaic module cells in electroluminescence images[J]. Solar energy,2019, 185:455-468.

    [3] 陶志勇,杜福廷,任晓奎,等.基于T-VGG的太阳电池片缺陷检测[J].太阳能学报,2022, 43(7):145-151.

    TAO Z Y, DU F T, REN X K, et al. Defect detection of solar cells based on T-VGG[J]. Acta energiae solaris sinica, 2022, 43(7):145-151.

    [4]

    BARTLER A, MAUCH L, YANG B, et al. Automated detection of solar cell defects with deep learning[C]//201826th European Signal Processing Conference(EUSIPCO),Rome, Italy, 2018:2035-2039.

    [5] 邓堡元,何赟泽,王洪金,等.光伏电池图像序列的深度学习检测方法[J].机械工程学报,2021, 57(8):98-106.

    DENG B Y, HE BZ, WANG H J, et al. Deep learning inspection for photovoltaic cell image sequence[J]. Journal of mechanical engineering, 2021, 57(8):98-106.

    [6] 张一平,许盛之,孟子尧,等.基于FC-ACGAN网络的太阳电池EL图像的数据增强方法[J].太阳能学报,2021, 42(10):35-41.

    ZHANG Y P, XU S Z, MENG Z Y, et al. Data enhancement method of solar cell el image based on FCACGAN network[J]. Acta energiae solaris sinica, 2021,42(10):35-41.

    [7] 蒋尚俊,易辉,李红涛,等.基于迁移学习与ResNet的太阳电池缺陷检测方法[J].太阳能学报,2023, 44(7):116-121.

    JIANG S J, YI H, LI H T, et al. Defect detection method of solar cells based on transfer learning and ResNet[J].Acta energiae solaris sinica, 2023, 44(7):116-121.

    [8]

    ELFWING S, UCHIBE E, DOYA K. Sigmoid-weighted linear units for neural network function approximation in reinforcement learning[J]. Neural networks, 2018, 107:3-11.

    [9]

    CHOLLET F. Xception:deep learning with depthwise separable convolutions[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR),Honolulu, HI, USA, 2017:1800-1807.

    [10]

    WOO S, PARK J, LEE J Y, et al. CBAM:convolutional block attention module[EB/OL]. 2018:arXiv:1807.06521. http://arxiv.org/abs/1807.06521.

    [11]

    LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Honolulu, HI, USA, 2017:936-944.

    [12]

    YU J H, JIANG Y N, WANG Z Y, et al. UnitBox:an advanced object detection network[C]//Proceedings of the24th ACM International Conference on Multimedia,Amsterdam, Netherlands, 2016.

    [13]

    REZATOFIGHI H, TSOI N, GWAK J, et al. Generalized intersection over union:a metric and a loss for bounding box regression[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR), Long Beach, CA, USA, 2019:658-666.

    [14]

    ZHENG Z H, WANG P, LIU W, et al. Distance-IoU loss:faster and better learning for bounding box regression[J].Proceedings of the AAAI conference on artificial intelligence, 2020, 34(7):12993-13000.

    [15]

    ZHENG Z H, WANG P, REN D W, et al. Enhancing geometric factors in model learning and inference for object detection and instance segmentation[J]. IEEE transactions on cybernetics, 2022, 52(8):8574-8586.

计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-09
  • 刊出日期:  2024-09-27

目录

    /

    返回文章
    返回