张越, 臧海祥, 韩海腾, 李叶阳, 卫志农, 孙国强. 基于FSN-MCCN-SA-BiLSTM的短期风速预测[J]. 太阳能学报, 2024, 45(8): 529-536. DOI: 10.19912/j.0254-0096.tynxb.2023-0556
引用本文: 张越, 臧海祥, 韩海腾, 李叶阳, 卫志农, 孙国强. 基于FSN-MCCN-SA-BiLSTM的短期风速预测[J]. 太阳能学报, 2024, 45(8): 529-536. DOI: 10.19912/j.0254-0096.tynxb.2023-0556
Zhang Yue, Zang Haixiang, Han Haiteng, Li Yeyang, Wei Zhinong, Sun Guoqiang. SHORT-TERM WIND SPEED FORECASTING BASED ON FSN-MCCN-SA-BiLSTM[J]. Acta Energiae Solaris Sinica, 2024, 45(8): 529-536. DOI: 10.19912/j.0254-0096.tynxb.2023-0556
Citation: Zhang Yue, Zang Haixiang, Han Haiteng, Li Yeyang, Wei Zhinong, Sun Guoqiang. SHORT-TERM WIND SPEED FORECASTING BASED ON FSN-MCCN-SA-BiLSTM[J]. Acta Energiae Solaris Sinica, 2024, 45(8): 529-536. DOI: 10.19912/j.0254-0096.tynxb.2023-0556

基于FSN-MCCN-SA-BiLSTM的短期风速预测

SHORT-TERM WIND SPEED FORECASTING BASED ON FSN-MCCN-SA-BiLSTM

  • 摘要: 为了提升短期风速预测的准确性,提出一种新型的短期风速预测方法。该方法以历史风速和气象数据作为输入,首先利用特征选择网络量化输入序列中每个时间步不同特征的重要程度,其次采用多尺度因果卷积网络捕捉其局部时序特征,然后引入自注意力融合不同卷积层的特征,得到能反映风速多尺度变化特性的高维特征序列,最后利用双向长短期记忆网络提取高维特征序列的长期时序特征并得到风速预测结果。实验结果表明,该方法能考虑不同输入特征对于风速的动态影响,同时充分提取风速序列的局部与长期时序特征,其进行提前1 h的风速预测时,所得归一化均方根误差与平均绝对误差分别为11.92%和8.11%,相关系数和决定系数分别为0.9735和0.9477,可有效提高短期风速预测的准确性。

     

    Abstract: In order to improve the short-term wind speed prediction acccuracy, a novel wind speed forecasting method is proposed. This method uses historical wind speed and meteorological data as inputs and first utilizes feature selection networks to quantify the importance of different features at each time step in the input sequence. Local temporal features are then captured by the multi-scale causal convolutional network. After that, self attention is introduced to integrate features from different convolutional layers, generating a high-dimensional feature sequence which can reflect multi-scale characteristics of the wind speed. Finally, BiLSTM is used to extract long-term temporal features of the high-dimensional feature sequence to obtain forecasting results of wind speed. Experimental results demonstrate that the proposed method can consider the dynamic effects of different input features on wind speed and fully extract both local and long-term temporal features of the wind speed sequence. The normalized root mean square error and mean absolute error of the proposed model for one-hour ahead wind speed forecasting are 11.92% and 8.11%, respectively. The proposed method also achieves a high prediction accuracy with correlation coefficient of 0.9735 and coefficient of determination of 0.9477, which improves the accuracy of short-term wind speed forecasting effectively.

     

/

返回文章
返回