王琳, 王聪, 张宏立, 张绍华. 分数阶忆阻二阶电流反馈型Buck-Boost变换器动力学建模与分析[J]. 太阳能学报, 2024, 45(8): 314-323. DOI: 10.19912/j.0254-0096.tynxb.2023-0554
引用本文: 王琳, 王聪, 张宏立, 张绍华. 分数阶忆阻二阶电流反馈型Buck-Boost变换器动力学建模与分析[J]. 太阳能学报, 2024, 45(8): 314-323. DOI: 10.19912/j.0254-0096.tynxb.2023-0554
Wang Lin, Wang Cong, Zhang Hongli, Zhang Shaohua. DYNAMIC MODELING AND ANAIYSIS OF FRACTIONAL MEMRISTER SECOND-ORDER CURRENT FEEDBACK BUCK-BOOST CONVERTER[J]. Acta Energiae Solaris Sinica, 2024, 45(8): 314-323. DOI: 10.19912/j.0254-0096.tynxb.2023-0554
Citation: Wang Lin, Wang Cong, Zhang Hongli, Zhang Shaohua. DYNAMIC MODELING AND ANAIYSIS OF FRACTIONAL MEMRISTER SECOND-ORDER CURRENT FEEDBACK BUCK-BOOST CONVERTER[J]. Acta Energiae Solaris Sinica, 2024, 45(8): 314-323. DOI: 10.19912/j.0254-0096.tynxb.2023-0554

分数阶忆阻二阶电流反馈型Buck-Boost变换器动力学建模与分析

DYNAMIC MODELING AND ANAIYSIS OF FRACTIONAL MEMRISTER SECOND-ORDER CURRENT FEEDBACK BUCK-BOOST CONVERTER

  • 摘要: 提出一种基于分数阶微积分理论的有源压控忆阻负载峰值电流型Buck-Boost变换器模型。在推导其在电感电流连续模式下电路方程的基础上,通过数值仿真分析并验证Buck-Boost变换器的复杂动力学行为。仿真实验结果表明,随着系统阶次的变化及忆性负载的加入,系统分岔点均发生后移,系统稳定工作范围大大增加;对整数阶忆阻负载变换器模型施加两时间尺度参数激励与外接激励,研究当慢变参数频率与系统固有频率产生量级差时的簇发振荡行为,随着系统激励幅值A的变化,系统会出现概周期的单-Hopf簇发振荡。

     

    Abstract: An active voltage-controlled Buck-Boost converter model with memristor load and peak current is proposed based on fractional order theory. The complex dynamic behavior of the Buck-Boost converter is analyzed and verified by numerical simulations based on the derivation of its circuit equations in the continuous mode of the inductor current. The simulation results show that the bifurcation point of the system shifts backward with the change of the system order and the addition of the memristor load, and the stable operating range of the system is greatly increased. Applying two time-scaled parametric excitations and external excitations are applied to the whole-order memristor load transformer model, and the cluster oscillation behavior is studied when the slow variable parameter frequency is different from the natural frequency of the system. With the change of the excitation amplitude of the system, A, a single Hopf oscillation behavior occurs periodically.

     

/

返回文章
返回