孟亦康, 许野, 王鑫鹏, 王涛, 李薇. 基于相似日选取和PCA-LSTM的光伏出力组合预测模型研究[J]. 太阳能学报, 2024, 45(7): 453-461. DOI: 10.19912/j.0254-0096.tynxb.2023-0498
引用本文: 孟亦康, 许野, 王鑫鹏, 王涛, 李薇. 基于相似日选取和PCA-LSTM的光伏出力组合预测模型研究[J]. 太阳能学报, 2024, 45(7): 453-461. DOI: 10.19912/j.0254-0096.tynxb.2023-0498
Meng Yikang, Xu Ye, Wang Xinpeng, Wang Tao, Li Wei. RESEARCH ON PHOTOVOLTAIC OUTPUT COMBINATION PREDICTION MODEL BASED ON SIMILAR DAY SELECTION AND PCA-LSTM[J]. Acta Energiae Solaris Sinica, 2024, 45(7): 453-461. DOI: 10.19912/j.0254-0096.tynxb.2023-0498
Citation: Meng Yikang, Xu Ye, Wang Xinpeng, Wang Tao, Li Wei. RESEARCH ON PHOTOVOLTAIC OUTPUT COMBINATION PREDICTION MODEL BASED ON SIMILAR DAY SELECTION AND PCA-LSTM[J]. Acta Energiae Solaris Sinica, 2024, 45(7): 453-461. DOI: 10.19912/j.0254-0096.tynxb.2023-0498

基于相似日选取和PCA-LSTM的光伏出力组合预测模型研究

RESEARCH ON PHOTOVOLTAIC OUTPUT COMBINATION PREDICTION MODEL BASED ON SIMILAR DAY SELECTION AND PCA-LSTM

  • 摘要: 构建一套融合主成分分析方法(PCA)、改进的K-均值聚类方法、动态时间规整算法(DTW)和长短期记忆神经网络(LSTM)的光伏出力组合预测模型。在运用PCA法提取气象要素的主成分因子的基础上,创新性地联合使用改进的K-均值聚类方法和DTW算法生成内部关联程度高且与待预测日的天气特征相近的历史日样本集;然后,结合LSTM神经网络,构建基于相似日选取的光伏发电功率预测模型,最终实现了云南某光伏电站发电功率的精准预测。与其他预测模型的对比结果显示,该文构建的组合预测模型具备更好的预测性能和广阔的应用前景。

     

    Abstract: In this paper, a PV output portfolio forecasting model is constructed by integrating principal component analysis(PCA), an improved K-means clustering method, dynamic time warping(DTW), and a long-short term memory(LSTM) neural network. Based on the PCA method to extract the principal component factors of meteorological elements, the improved K-means clustering method and DTW algorithm are innovatively used to generate a set of historical day samples with a high degree of internal correlation and similar weather characteristics to the day to be predicted. Then, the LSTM neural network is combined to build a PV power prediction model based on the selection of similar days, which finally achieves the accurate prediction of power generation of a PV plant in Yunnan. The comparison results with other prediction models show that the combined prediction model constructed in this paper has better prediction performance and broad application prospects.

     

/

返回文章
返回