李俊逸, 尧远, 刘明浩. 基于振动信号最优特征提取算法的风力机齿轮箱SVM故障诊断[J]. 太阳能学报, 2024, 45(7): 626-633. DOI: 10.19912/j.0254-0096.tynxb.2023-0484
引用本文: 李俊逸, 尧远, 刘明浩. 基于振动信号最优特征提取算法的风力机齿轮箱SVM故障诊断[J]. 太阳能学报, 2024, 45(7): 626-633. DOI: 10.19912/j.0254-0096.tynxb.2023-0484
Li Junyi, Yao Yuan, Liu Minghao. SVM FAULT DIAGNOSIS OF WIND TURBINE'S GEARBOX BASED ON OPTIMAL FEATURE EXTRACTION ALGORITHM OF VIBRATION SIGNAL[J]. Acta Energiae Solaris Sinica, 2024, 45(7): 626-633. DOI: 10.19912/j.0254-0096.tynxb.2023-0484
Citation: Li Junyi, Yao Yuan, Liu Minghao. SVM FAULT DIAGNOSIS OF WIND TURBINE'S GEARBOX BASED ON OPTIMAL FEATURE EXTRACTION ALGORITHM OF VIBRATION SIGNAL[J]. Acta Energiae Solaris Sinica, 2024, 45(7): 626-633. DOI: 10.19912/j.0254-0096.tynxb.2023-0484

基于振动信号最优特征提取算法的风力机齿轮箱SVM故障诊断

SVM FAULT DIAGNOSIS OF WIND TURBINE'S GEARBOX BASED ON OPTIMAL FEATURE EXTRACTION ALGORITHM OF VIBRATION SIGNAL

  • 摘要: 针对风力机齿轮箱故障诊断的特征提取过程,提出基于振动信号最优特征提取算法的风力机齿轮箱SVM故障诊断方法。首先,分析3种主要特征提取算法各自适应性高的信号类型;然后,根据不同类型信号所具有的信号特性,利用信号分析对传入的振动信号进行特性提取并分类,将不同类别信号与适应性高的特征提取算法进行匹配,实现振动信号的最优特征提取;最后,将匹配算法与支持向量机模型结合实现故障诊断。对实际采集的3种齿轮故障信号进行测试与验证,结果表明该方法可有效进行最优特征提取与算法匹配,相比未经过匹配算法具有更高的故障诊断准确率。

     

    Abstract: Aiming at the feature extraction process of wind turbine’s gear box fault diagnosis, a SVM fault diagnosis method based on the optimal feature extraction algorithm of vibration signal is proposed. Firstly, the signal types with high adaptability of the three main feature extraction algorithms are analyzed. Then, according to the signal characteristics of different types of signals, the characteristics of incoming vibration signals are extracted and classified by signal analysis, and the different types of signals are matched with the feature extraction algorithm with high adaptability to achieve the optimal feature extraction of vibration signals. Finally, the matching algorithm and support vector machines model are combined to realize fault diagnosis. Three kinds of gear fault signals collected in practice are tested and verified. The results show that this method can effectively extract the optimal features and match the algorithm, and has a higher fault diagnosis accuracy than the unmatched algorithm.

     

/

返回文章
返回