朱哲萱, 马汝为, 曹黎媛, 李春祥. 基于深度学习和广义S变换协同的风速预测[J]. 太阳能学报, 2024, 45(7): 664-671. DOI: 10.19912/j.0254-0096.tynxb.2023-0416
引用本文: 朱哲萱, 马汝为, 曹黎媛, 李春祥. 基于深度学习和广义S变换协同的风速预测[J]. 太阳能学报, 2024, 45(7): 664-671. DOI: 10.19912/j.0254-0096.tynxb.2023-0416
Zhu Zhexuan, Ma Ruwei, Cao Liyuan, Li Chunxiang. WIND SPEED PREDICTION SYNERGISTICALLY BASED ON DEEP LEARNING AND GENERALIZEDS TRANSFORM[J]. Acta Energiae Solaris Sinica, 2024, 45(7): 664-671. DOI: 10.19912/j.0254-0096.tynxb.2023-0416
Citation: Zhu Zhexuan, Ma Ruwei, Cao Liyuan, Li Chunxiang. WIND SPEED PREDICTION SYNERGISTICALLY BASED ON DEEP LEARNING AND GENERALIZEDS TRANSFORM[J]. Acta Energiae Solaris Sinica, 2024, 45(7): 664-671. DOI: 10.19912/j.0254-0096.tynxb.2023-0416

基于深度学习和广义S变换协同的风速预测

WIND SPEED PREDICTION SYNERGISTICALLY BASED ON DEEP LEARNING AND GENERALIZEDS TRANSFORM

  • 摘要: 针对实测风速的非平稳性特点,提出一种基于深度学习和时频分析的风速混合预测方法。首先,采用经验模态分解(EMD)将风速分解为若干子层,由此得到趋势分量和脉动分量以降低风速的非线性。根据2个分量的时频特性,采用长短时记忆(LSTM)处理趋势分量,极限学习机(ELM)处理脉动分量。其次,引入广义S变换(GST)来获得预测过程中的时频特性。同时,采用改进的灰狼算法(IGWO)对GST、LSTM和ELM的参数进行优化。最后,以内蒙古某风场实测风速对所提模型进行验证,结果表明该模型具有较高的精度。

     

    Abstract: A hybrid wind speed prediction model based on deep learning and time-frequency analysis is proposed, aiming at the nonstationary characteristics of wind speed. Firstly, empirical mode decomposition(EMD) is used to decompose the wind speed into several sub layers and summarized into a trend component and a fluctuating component to reduce the nonlinearity. According to the timefrequency characteristics of the two components, long short term memory(LSTM) is used to deal with the trend component while extreme learning machine(ELM) with the fluctuating component. Then, generalized S transform(GST) is innovatively introduced to obtain the time-frequency characteristics of the prediction process. Improved grey wolf algorithm(IGWO) is used to optimize the parameters of GST, LSTM and ELM at the same time. Finally, the proposed model is validated with the actual data of a wind farm in Inner Mongolia, and the results show that the model has accuracy.

     

/

返回文章
返回