吴诗淼, 王文波, 朱婷, 喻敏. 基于跳跃连接多尺度CNN的锂离子电池剩余寿命预测[J]. 太阳能学报, 2024, 45(7): 199-208. DOI: 10.19912/j.0254-0096.tynxb.2023-0364
引用本文: 吴诗淼, 王文波, 朱婷, 喻敏. 基于跳跃连接多尺度CNN的锂离子电池剩余寿命预测[J]. 太阳能学报, 2024, 45(7): 199-208. DOI: 10.19912/j.0254-0096.tynxb.2023-0364
Wu Shimiao, Wang Wenbo, Zhu Ting, Yu Min. PREDICTION OF RESIDUAL LIFE OF LITHIUM ION BATTERY BASED ON MULTI-SCALE CNN WITH JUMP CONNECTIONCNN[J]. Acta Energiae Solaris Sinica, 2024, 45(7): 199-208. DOI: 10.19912/j.0254-0096.tynxb.2023-0364
Citation: Wu Shimiao, Wang Wenbo, Zhu Ting, Yu Min. PREDICTION OF RESIDUAL LIFE OF LITHIUM ION BATTERY BASED ON MULTI-SCALE CNN WITH JUMP CONNECTIONCNN[J]. Acta Energiae Solaris Sinica, 2024, 45(7): 199-208. DOI: 10.19912/j.0254-0096.tynxb.2023-0364

基于跳跃连接多尺度CNN的锂离子电池剩余寿命预测

PREDICTION OF RESIDUAL LIFE OF LITHIUM ION BATTERY BASED ON MULTI-SCALE CNN WITH JUMP CONNECTIONCNN

  • 摘要: 为更好地利用卷积神经网络(CNN)中所有卷积层获取的特征信息,提出一种基于跳跃连接多尺度CNN的锂离子电池剩余寿命预测模型。该模型以电池的健康因子作为输入,利用基于跳跃连接的多尺度CNN模型,同时提取锂离子电池健康因子不同尺度的局部特征信息和全局特征信息,并通过信息融合模块融合所有的局部特征信息和全局特征信息,最后输出剩余寿命的预测值。实验结果表明,所提方法可更准确地预测锂离子电池剩余寿命,与经典的CNN方法、Bi-LSTM方法、EMD-LSTM方法和VMD-GRU方法相比,其均方根误差(ERMSE)分别降低75.7%、78.3%、83.8%、77.8%,平均绝对误差(EMAE)分别降低80.7%、80.9%、86.8%、82.3%,平均绝对百分误差(EMAPE)分别降低81.0%、82.2%、87.0%、83.1%,模型判定系数(R2)分别增加17.4%、23.2%、44.5%、25.8%。

     

    Abstract: In order to make better use of the feature information obtained by all convolutional layers in convolutional neural networks(CNN), a prediction model for the remaining life of lithium-ion batteries based on jump-connected multi-scale CNN is proposed. The model takes the health factor of the battery as input, uses the multi-scale CNN model based on jump connection, simultaneously extracts the local feature information and global feature information of different scales of the health factor of the lithium-ion battery, and fuses all the local feature information and global feature information through the information fusion module, and finally outputs the predicted value of the remaining life. Experimental results show that the proposed method can predict the remaining life of lithium-ion batteries more accurately. Compared with the classical CNN method, Bi-LSTM method, EMD-LSTM method and VMD-GRU method, the root means square error(ERMSE) is reduced by 75.7%, 78.3%, 83.8% and 77.8%, respectively. Mean absolute error(EMAE) decreased by 80.7%, 80.9%, 86.8%, 82.3%, and mean absolute percentage error(EMAPE) decreased by 81.0%, 82.2%, 87.0% and 83.1%, respectively. The model determination coefficient(R~2) increased by 17.4%, 23.2%, 44.5% and 25.8%, respectively.

     

/

返回文章
返回