邹龙洲, 王文韫, 郭迎福, 杨景云. 基于改进YOLOv4的风力机叶片损伤检测方法[J]. 太阳能学报, 2024, 45(7): 718-723. DOI: 10.19912/j.0254-0096.tynxb.2023-0353
引用本文: 邹龙洲, 王文韫, 郭迎福, 杨景云. 基于改进YOLOv4的风力机叶片损伤检测方法[J]. 太阳能学报, 2024, 45(7): 718-723. DOI: 10.19912/j.0254-0096.tynxb.2023-0353
ZOU Long-zhou, WANG Wen-yun, GUO Ying-fu, YANG Jing-yun. WIND TURBINE BLADE DAMAGE DETECTION METHOD BASED ON IMPROVED YOLOv4[J]. Acta Energiae Solaris Sinica, 2024, 45(7): 718-723. DOI: 10.19912/j.0254-0096.tynxb.2023-0353
Citation: ZOU Long-zhou, WANG Wen-yun, GUO Ying-fu, YANG Jing-yun. WIND TURBINE BLADE DAMAGE DETECTION METHOD BASED ON IMPROVED YOLOv4[J]. Acta Energiae Solaris Sinica, 2024, 45(7): 718-723. DOI: 10.19912/j.0254-0096.tynxb.2023-0353

基于改进YOLOv4的风力机叶片损伤检测方法

WIND TURBINE BLADE DAMAGE DETECTION METHOD BASED ON IMPROVED YOLOv4

  • 摘要: 针对深度卷积神经网络模型因复杂度高导致嵌入式设备难以实现在线检测的问题,提出改进的YOLOv4的风力机叶片损伤检测方法。首先使用MobileNetv3网络代替YOLOv4中的CSPdarknet53主干特征提取网络进行特征提取,并将相同shape的特征层进行加强特征提取;其次在加强特征提取网络上添加注意力机制ECA,并对YOLOv4的边界框损失函数与分类损失函数进行优化;最后,将改进前后的算法与其他检测算法进行比较。结果表明:改进的YOLOv4算法的检测速度可达单张检测时间为0.018 s,检测准确率达到95.7%,通过对YOLOv4网络进行改进,在保证检测准确的前提下,轻量化的模型可满足嵌入式设备检测风力机叶片损伤的需求。

     

    Abstract: An improved YOLOv4 wind turbine blade damage detection method is proposed to solve the problem that on-line detection of embedded equipment is difficult due to high complexity of deep convolution neural network model. Firstly, MobileNetv3 network is used to replace CSPDknet53 backbone feature extraction network in YOLOv4 for feature extraction, and feature extraction is enhanced by feature layer of the same shape. Secondly, an attention mechanism ECA is added to the enhanced feature extraction network, and the loss function of YOLOv4 boundary frame and the loss function of classification are optimized. Finally, the improved algorithm is compared with other detection algorithms. The result shows that the detection speed of the improved YOLOv4 algorithm can reach 0.018seconds per sheet and the detection accuracy reaches 95.7%. Through improving the YOLOv4 network, the lightweight model can meet the requirement of embedded equipment to detect wind turbine blade damage on the premise of accurate detection.

     

/

返回文章
返回