王印松, 吕率豪. 基于改进时间卷积网络的微电网超短期负荷预测[J]. 太阳能学报, 2024, 45(6): 255-263. DOI: 10.19912/j.0254-0096.tynxb.2023-0307
引用本文: 王印松, 吕率豪. 基于改进时间卷积网络的微电网超短期负荷预测[J]. 太阳能学报, 2024, 45(6): 255-263. DOI: 10.19912/j.0254-0096.tynxb.2023-0307
Wang Yinsong, Lyu Shuaihao. ULTRA-SHORT-TERM POWER LOAD PREDICTION OF MICRO-GRID BASED ON IMPROVED TEMPORAL CONVOLUTIONAL NETWORK[J]. Acta Energiae Solaris Sinica, 2024, 45(6): 255-263. DOI: 10.19912/j.0254-0096.tynxb.2023-0307
Citation: Wang Yinsong, Lyu Shuaihao. ULTRA-SHORT-TERM POWER LOAD PREDICTION OF MICRO-GRID BASED ON IMPROVED TEMPORAL CONVOLUTIONAL NETWORK[J]. Acta Energiae Solaris Sinica, 2024, 45(6): 255-263. DOI: 10.19912/j.0254-0096.tynxb.2023-0307

基于改进时间卷积网络的微电网超短期负荷预测

ULTRA-SHORT-TERM POWER LOAD PREDICTION OF MICRO-GRID BASED ON IMPROVED TEMPORAL CONVOLUTIONAL NETWORK

  • 摘要: 为了提高微电网中用电负荷超短期预测的准确性,对时间卷积网络进行特征增强和注意力增强改进,将时间卷积网络中的一维因果膨胀卷积替换为二维卷积,同时利用时间模式注意力机制对时间卷积网络的隐藏层加权处理,提取负荷的多维特征,挖掘序列中存在的潜藏联系。根据改进的方法建立预测模型并进行对比实验以验证方法的有效性,能够对用电负荷的不确定性进行有效的处理,拓宽特征向量的维度,有效捕捉负荷序列中与时间有关的特征,提高用电负荷的预测精度。

     

    Abstract: In order to improve the accuracy of ultra-short-term prediction of power load in micro-grid, feature enhancement and attention enhancement improvements are carried out on temporal convolution networks. It replaces the one-dimensional causal dilated convolution in the time convolution network with two-dimensional convolution, and uses the time pattern attention mechanism to weight the hidden layer of the time convolution network, extract the multidimensional characteristics of the load, and excavate the potential connections in the sequence. According to the improved method, the prediction model is established and a comparative experiment is carried out to verify the accuracy of the proposed method. As the results, it can effectively deal with the uncertainty of the power load, broaden the dimension of the feature vector, effectively capture the time-related characteristics in the load sequence, and improve the prediction accuracy of the power load.

     

/

返回文章
返回