焦佳明, 毕俊喜, 葛新宇, 王国富, 马航, 周大川. 基于优化LSTM模型的风力机叶片剩余使用寿命预测[J]. 太阳能学报, 2024, 45(6): 495-502. DOI: 10.19912/j.0254-0096.tynxb.2023-0215
引用本文: 焦佳明, 毕俊喜, 葛新宇, 王国富, 马航, 周大川. 基于优化LSTM模型的风力机叶片剩余使用寿命预测[J]. 太阳能学报, 2024, 45(6): 495-502. DOI: 10.19912/j.0254-0096.tynxb.2023-0215
Jiao Jiaming, Bi Junxi, Ge Xinyu, Wang Guofu, Ma Hang, Zhou Dachuan. REMAINING USEFUL LIFE PREDICTION OF WIND TURBINE BLADES BASED ON OPTIMIZED LSTM MODEL[J]. Acta Energiae Solaris Sinica, 2024, 45(6): 495-502. DOI: 10.19912/j.0254-0096.tynxb.2023-0215
Citation: Jiao Jiaming, Bi Junxi, Ge Xinyu, Wang Guofu, Ma Hang, Zhou Dachuan. REMAINING USEFUL LIFE PREDICTION OF WIND TURBINE BLADES BASED ON OPTIMIZED LSTM MODEL[J]. Acta Energiae Solaris Sinica, 2024, 45(6): 495-502. DOI: 10.19912/j.0254-0096.tynxb.2023-0215

基于优化LSTM模型的风力机叶片剩余使用寿命预测

REMAINING USEFUL LIFE PREDICTION OF WIND TURBINE BLADES BASED ON OPTIMIZED LSTM MODEL

  • 摘要: 针对传统寿命预测方法计算复杂、耗时且不具普适性等问题,提出一种基于优化长短期记忆网络(LSTM)的风力机叶片剩余使用寿命(RUL)预测模型。首先,将多维传感器监测数据可视化,以观察数据特征并进行初次特征筛选。然后,对筛选后的数据进行归一化处理,并使用主成分分析法(PCA)进行数据融合,以去除冗余信息和降低特征维度。其次,使用自适应矩估计(AME)算法为不同网络参数提供独立的自适应性学习率;使用平滑平均绝对误差(SMAE)损失函数来综合两种传统回归损失函数的特点。最后,经过多次试验选定合适的LSTM层数及神经元数,并以复杂系统的多尺度时序监测数据为算例对模型进行试验验证。试验结果表明,在一种故障模式下,优化LSTM预测模型相较于其他传统机器学习模型在评价指标及预测误差分布情况上占优,表明该文所提模型具有更高的准确性及稳定性。

     

    Abstract: Aiming at the problems of complex calculation, time consuming and inapplicability of traditional life prediction methods, a wind turbine blade remaining useful life(RUL) prediction model based on optimized Long Short-Term Memory(LSTM) is proposed. In this study, the multidimensional sensor monitoring data were visualized to observe the data features and perform initial feature screening. Then, the filtered data were normalized and the data were fused using principal component analysis(PCA) to remove redundant information and reduce feature dimensionality. Furthermore, the adaptive moment estimation(AME) algorithm was employed to provide independent adaptive learning rates for different network parameters, and the smoothed mean absolute error(SMAE) loss function was utilized to synthesize the characteristics of two traditional regression loss functions. After several experiments, the optimal number of LSTM layers and neurons was selected. The model was experimentally validated using multi-scale time-series monitoring data of complex systems as an arithmetic example. The experimental results demonstrate that the optimized LSTM prediction model outperforms other traditional machine learning models in terms of evaluation index and prediction error distribution under one fault mode. This indicates that the proposed model offers higher accuracy and stability.

     

/

返回文章
返回