贾东于, 李开明, 高晓清, 高雨濛. 基于FY-4A和机器学习的太阳辐照度超短期预测[J]. 太阳能学报, 2024, 45(4): 578-583. DOI: 10.19912/j.0254-0096.tynxb.2022-1972
引用本文: 贾东于, 李开明, 高晓清, 高雨濛. 基于FY-4A和机器学习的太阳辐照度超短期预测[J]. 太阳能学报, 2024, 45(4): 578-583. DOI: 10.19912/j.0254-0096.tynxb.2022-1972
Jia Dongyu, Li Kaiming, Gao Xiaoqing, Gao Yumeng. NOWCASTING PREDICTION OF SOLAR IRRADIANCE BASED ON FY-4A AND MACHINE LEARNING[J]. Acta Energiae Solaris Sinica, 2024, 45(4): 578-583. DOI: 10.19912/j.0254-0096.tynxb.2022-1972
Citation: Jia Dongyu, Li Kaiming, Gao Xiaoqing, Gao Yumeng. NOWCASTING PREDICTION OF SOLAR IRRADIANCE BASED ON FY-4A AND MACHINE LEARNING[J]. Acta Energiae Solaris Sinica, 2024, 45(4): 578-583. DOI: 10.19912/j.0254-0096.tynxb.2022-1972

基于FY-4A和机器学习的太阳辐照度超短期预测

NOWCASTING PREDICTION OF SOLAR IRRADIANCE BASED ON FY-4A AND MACHINE LEARNING

  • 摘要: 针对中国西部地区辐射资源充沛但观测资料匮乏的特点,提出一种基于辐照度观测数据、遥感数据、McClear和随机森林算法的太阳辐照度超短期预测方法,并重点分析遥感数据对辐照度预测效果的影响。结果表明:添加遥感数据能够优化不同时间步长的辐照度预测效果,并能显著降低平均绝对百分比误差(MAPE)值高于40%的预测大误差出现概率。同时,添加遥感数据对预测效果的提升随时间步长呈线性增加关系,nRMSE的差值变化范围从2.08%变为13.81%;nMAE的差值从1.64%变化为14.52%;R2的差值随时间步长的变化最为明显,从-0.03变为-0.43。但值得注意的是,添加卫星数据会显著增加模型的建立和超参寻优时间。

     

    Abstract: In view of the characteristics of abundant radiation resources but lack of observation data in China,this study proposes a short-term solar irradiance forecasting method based on radiation observation data,remote sensing data,McClear,and random forest algorithm,and focuses on analyzing the impact of remote sensing data on radiation forecasting effectiveness. The results show that adding remote sensing data can optimize the forecasting effectiveness at different time horizons and significantly reduce the probability of large prediction errors with a mean absolute percentage error(MAPE)value exceeding 40%. Additionally,the improvement of the forecasting effectiveness with the addition of remote sensing data increases linearly with the time horizon. The difference range of normalized root mean square error(nRMSE)changes from 2.08% to 13.81%,the difference of normalized mean absolute error(nMAE)changes from 1.64% to 14.52%,the difference of R~2shows the most significant change with the time step,changing from-0.03 to-0.43.However,it is worth noting that adding satellite data will significantly increase the time required for model establishment and hyperparameter optimization.

     

/

返回文章
返回