弯扭耦合长柔叶片颤振速度分析

罗涛, 巫发明, 黄剑锋, 钟杰, 华旭刚

罗涛, 巫发明, 黄剑锋, 钟杰, 华旭刚. 弯扭耦合长柔叶片颤振速度分析[J]. 太阳能学报, 2024, 45(3): 90-94. DOI: 10.19912/j.0254-0096.tynxb.2022-1828
引用本文: 罗涛, 巫发明, 黄剑锋, 钟杰, 华旭刚. 弯扭耦合长柔叶片颤振速度分析[J]. 太阳能学报, 2024, 45(3): 90-94. DOI: 10.19912/j.0254-0096.tynxb.2022-1828
Luo Tao, Wu Faming, Huang Jianfeng, Zhong Jie, Hua Xugang. FLUTTER SPEED ANALYSIS OF BEND-TWIST COUPLED LONG FLEXIBLE BLADE[J]. Acta Energiae Solaris Sinica, 2024, 45(3): 90-94. DOI: 10.19912/j.0254-0096.tynxb.2022-1828
Citation: Luo Tao, Wu Faming, Huang Jianfeng, Zhong Jie, Hua Xugang. FLUTTER SPEED ANALYSIS OF BEND-TWIST COUPLED LONG FLEXIBLE BLADE[J]. Acta Energiae Solaris Sinica, 2024, 45(3): 90-94. DOI: 10.19912/j.0254-0096.tynxb.2022-1828

弯扭耦合长柔叶片颤振速度分析

基金项目: 

中国中车股份有限公司产业数字化项目“基于7.xMW风力发电机组的数字化工程”资助

湖南省科技人才托举工程“小荷”科技人才项目(2023TJ-X28)

详细信息
    通讯作者:

    罗涛(1993—),男,博士、工程师,主要从事风电机组整机动力学、叶片设计及气动弹性方面的研究。luotao1@csrzic.com

  • 中图分类号: TM315

FLUTTER SPEED ANALYSIS OF BEND-TWIST COUPLED LONG FLEXIBLE BLADE

  • 摘要: 针对弯扭耦合叶片的颤振速度进行研究,提出基于FAST_v8结合非线性几何精确梁理论评估叶片颤振速度的分析方法,基于典型截面失稳机理验证该分析方法的准确性。以某80.74 m叶片为研究对象,分析空气密度、叶片重心弦向位置、扭转频率、挥舞频率等参数变化对颤振速度的影响。结果表明,该80.47 m叶片颤振速度随空气密度增大而减小;质心前移可有效抑制经典颤振;提高扭转频率可提升叶片的稳定性;挥舞频率位于0.2~0.4 Hz之间时较合适。
    Abstract: The flutter speed of bend-twist coupled blades is studied. An analytical method based on FAST_v8 and nonlinear geometrically accurate beam theory is proposed to evaluate blade flutter speed. The accuracy of the analytical method is verified based on typical section instability mechanism. Taking an 80.74 m blade as the research object,the effects of air density,the position of blade gravity,torsional frequency and flap-wise on flutter velocity are analyzed. The results show that flutter speed decreases with the increase of air density. Classical flutter can be effectively inhibited by centroid forward movement. Increasing torsional frequency can improve blade stability. It is suitable when the flap-wise frequency is between 0.2 and 0.4 Hz.
  • [1]

    GRIFFITH D T,ASHWILL T D. The Sandia 100-meter allglass baseline wind turbine blade:SNL100-00[R].Springfield,VA:Sandia National Laboratories,2011:1-62.

    [2] 戴丽萍,白雪峰,王晓东,等.大型风力机叶片颤振边界的预测分析[J].工程热物理学报,2022,43(9):2357-2362.

    DAI L P,BAI X F,WANG X D,et al. Prediction and analysis of blade flutter boundary of large wind turbine[J].Journal of engineering thermophysics,2022,43(9):2357-2362.

    [3] 黄俊东,夏鸿建,李德源,等.大型风力机柔性叶片非线性气弹模态分析[J].机械工程学报,2020,56(14):180-187.

    HUANG J D,XIA H J,LI D Y,et al. Nonlinear aeroelastic modal analysis of large wind turbine flexible blades[J]. Journal of mechanical engineering,2020,56(14):180-187.

    [4] 柯世堂,陆曼曼,吴鸿鑫,等.基于风洞试验15 MW风力机叶片颤振后形态与能量图谱研究[J].空气动力学学报,2022,40(4):169-180,168.

    KE S T,LU M M,WU H X,et al. Experimental study on the post-flutter morphological chracteristics and energy dissipation of a 15 MW wind turbine blade[J]. Acta aerodynamica sinica,2022,40(4):169-180,168.

    [5]

    LI S N,CARACOGLIA L. Surrogate Model Monte Carlo simulation for stochastic flutter analysis of wind turbine blades[J]. Journal of wind engineering and industrial aerodynamics,2019,188:43-60.

    [6] 黄俊东,夏鸿建,李德源,等.风力机叶片后掠结构模态与颤振特性的影响分析[J].太阳能学报,2021,42(11):273-279.

    HUANG J D,XIA H J,LI D Y,et al. Analysis of effects of modal and flutter characteristics of wind turbine blade[J]. Acta energiae solaris sinica,2021,42(11):273-279.

    [7]

    SHAKYA P,SUNNY M R,MAITI D K. Nonlinear flutter analysis of a bend-twist coupled composite wind turbine blade in time domain[J]. Composite structures,2022,284:115216.

    [8]

    ZHOU X D,HUANG K F,LI Z. Effects of bend-twist coupling on flutter limits of composite wind turbine blades[J]. Composite structures,2018,192:317-326.

    [9]

    HAYAT K,DE LECEA A G M,MORIONES C D,et al.Flutter performance of bend-twist coupled large-scale wind turbine blades[J]. Journal of sound and vibration,2016,370:149-162.

    [10]

    LEE Y J,JHAN Y T,CHUNG C H. Fluid-structure interaction of FRP wind turbine blades under aerodynamic effect[J]. Composites part B:engineering,2012,43(5):2180-2191.

    [11]

    MANWELL J F,MCGOWAN J G,ROGERS A L. Wind energy explained[M]. Hoboken City:Wiley,2009.

    [12]

    HANSEN M H. Aeroelastic instability problems for wind turbines[J]. Wind energy,2007,10(6):551-577.

    [13]

    MEIROVITCH L. Methods of analytical dynamics[M].New York:McGraw-Hill Book Company,2010.

    [14]

    JONKMAN J M,BUHL M L Jr. Fast user's guide-updated august 2005[R]. National Renewable Energy Laboratory(NREL), Golden, CO, Report No. NREL/TP-500-38230,2005.

    [15]

    WANG Q, SPRAGUE M A, JONKMAN J, et al.BeamDyn:a high-fidelity wind turbine blade solver in the FAST modular framework[J]. Wind energy,2017,20(8):1439-1462.

计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-26
  • 刊出日期:  2024-03-27

目录

    /

    返回文章
    返回