莫易敏, 余自豪, 叶鹏, 范文健, 林阳. 基于迁移学习与GRU神经网络结合的锂电池SOH估计[J]. 太阳能学报, 2024, 45(3): 233-239. DOI: 10.19912/j.0254-0096.tynxb.2022-1771
引用本文: 莫易敏, 余自豪, 叶鹏, 范文健, 林阳. 基于迁移学习与GRU神经网络结合的锂电池SOH估计[J]. 太阳能学报, 2024, 45(3): 233-239. DOI: 10.19912/j.0254-0096.tynxb.2022-1771
Mo Yimin, Yu Zihao, Ye Peng, Fan Wenjian, Lin Yang. LITHIUM BATTERY SOH ESTIMATION METHOD BASED ON COMBINATION OF TRANSFER LEARNING AND GRU NEURAL NETWORK[J]. Acta Energiae Solaris Sinica, 2024, 45(3): 233-239. DOI: 10.19912/j.0254-0096.tynxb.2022-1771
Citation: Mo Yimin, Yu Zihao, Ye Peng, Fan Wenjian, Lin Yang. LITHIUM BATTERY SOH ESTIMATION METHOD BASED ON COMBINATION OF TRANSFER LEARNING AND GRU NEURAL NETWORK[J]. Acta Energiae Solaris Sinica, 2024, 45(3): 233-239. DOI: 10.19912/j.0254-0096.tynxb.2022-1771

基于迁移学习与GRU神经网络结合的锂电池SOH估计

LITHIUM BATTERY SOH ESTIMATION METHOD BASED ON COMBINATION OF TRANSFER LEARNING AND GRU NEURAL NETWORK

  • 摘要: 为解决退役电池梯次利用过程中单体剩余使用寿命估计困难、测试流程复杂与能耗高等问题,提出迁移学习与GRU网络结合的锂离子电池健康状态估计方法;设计的基础模型结构为输入层+GRU层+全连接层+输出层;根据健康因子的得分,选择训练基础模型的数据集、划分电池相似度等级并制定对应的迁移学习策略。实验结果表明:与其他模型相比,分别使用数据集的前40%与前25%训练得到的基础模型与迁移学习模型,两者的精度分别最大提高42.48%与95.28%,而预测稳定性分别最大提高55.38%与93.55%。

     

    Abstract: In order to solve the problems of difficulty in estimating the remaining service life of cells,complex testing process and high energy consumption in the cascade utilization of retired batteries. The designed basic model structure is input layer + GRU layer + full connection(full connect,FC)layer+output layer. According to the score of the health factor,the dataset for training the basic model is selected,the battery similarity level is divided,and the corresponding migration learning strategy is formulated. The experimental results show that compared with other models,the accuracy of the basic model and transfer learning model trained by using the first 40%and the first 25% of the dataset respectively increased by 42.48% and 95.28%,and the prediction stability Respectively the maximum increase of 55.38% and 93.55%.

     

/

返回文章
返回