何威, 苏中元, 史金林, 吴炎琳, 马昌流, 王军. 基于双重注意力GRU与相似修正的光伏功率预测[J]. 太阳能学报, 2024, 45(3): 480-487. DOI: 10.19912/j.0254-0096.tynxb.2022-1714
引用本文: 何威, 苏中元, 史金林, 吴炎琳, 马昌流, 王军. 基于双重注意力GRU与相似修正的光伏功率预测[J]. 太阳能学报, 2024, 45(3): 480-487. DOI: 10.19912/j.0254-0096.tynxb.2022-1714
He Wei, Su Zhongyuan, Shi Jinlin, Wu Yanlin, Ma Changliu, Wang Jun. PHOTOVOLTAIC POWER FORECASTING BASED ON DUAL-ATTENTION-GRU AND SIMILARITY MODIFICATION[J]. Acta Energiae Solaris Sinica, 2024, 45(3): 480-487. DOI: 10.19912/j.0254-0096.tynxb.2022-1714
Citation: He Wei, Su Zhongyuan, Shi Jinlin, Wu Yanlin, Ma Changliu, Wang Jun. PHOTOVOLTAIC POWER FORECASTING BASED ON DUAL-ATTENTION-GRU AND SIMILARITY MODIFICATION[J]. Acta Energiae Solaris Sinica, 2024, 45(3): 480-487. DOI: 10.19912/j.0254-0096.tynxb.2022-1714

基于双重注意力GRU与相似修正的光伏功率预测

PHOTOVOLTAIC POWER FORECASTING BASED ON DUAL-ATTENTION-GRU AND SIMILARITY MODIFICATION

  • 摘要: 提出一种基于双重注意力机制GRU网络(dual-attention-GRU)及相似序列修正的光伏功率预测模型。在EncoderDecoder框架的基础上引入特征注意力以及时间注意力,能有效解决GRU网络对于输入特征及时间序列存在注意力分散的问题;采用相似功率序列的未来功率值对DA-GRU预测结果进行修正,能进一步改进预测结果。算例采用DKASC数据进行验证,对比模型在不同预测步长下的表现,结果表明:相比于其他传统模型,DA-GRU在不同评价指标下具有最佳的预测表现,且相似序列修正方法能进一步提高其预测精度。

     

    Abstract: A photovoltaic power forecasting model based on dual-attention-GRU network and similar sequences modification is proposed. On the basis of the Encoder-Decoder framework,feature attention and temporal attention are introduced,which can effectively solve the problem of GRU network’s distraction from input features and time series. The DA-GRU forecasting results can be further improved by using the future power values of similar power sequences to modify the forecasting results. The example is verified by DKASC data,and the performance of the model under different forecasting steps is compared. The results show that DA-GRU has the best performance under different evaluation indexes compared with other traditional models,and the similar sequences modification method can further improve its forecasting accuracy.

     

/

返回文章
返回