张金良, 刘子毅, 孙安黎. 计及误差信息的自适应超短期风速预测模型[J]. 太阳能学报, 2024, 45(3): 18-28. DOI: 10.19912/j.0254-0096.tynxb.2022-1692
引用本文: 张金良, 刘子毅, 孙安黎. 计及误差信息的自适应超短期风速预测模型[J]. 太阳能学报, 2024, 45(3): 18-28. DOI: 10.19912/j.0254-0096.tynxb.2022-1692
Zhang Jinliang, Liu Ziyi, Sun Anli. ADAPTIVE ULTRA-SHORT-TERM WIND SPEED PREDICTION MODEL CONSIDERING ERROR INFORMATION[J]. Acta Energiae Solaris Sinica, 2024, 45(3): 18-28. DOI: 10.19912/j.0254-0096.tynxb.2022-1692
Citation: Zhang Jinliang, Liu Ziyi, Sun Anli. ADAPTIVE ULTRA-SHORT-TERM WIND SPEED PREDICTION MODEL CONSIDERING ERROR INFORMATION[J]. Acta Energiae Solaris Sinica, 2024, 45(3): 18-28. DOI: 10.19912/j.0254-0096.tynxb.2022-1692

计及误差信息的自适应超短期风速预测模型

ADAPTIVE ULTRA-SHORT-TERM WIND SPEED PREDICTION MODEL CONSIDERING ERROR INFORMATION

  • 摘要: 为提升超短期风速预测精度,提出一种计及误差信息的自适应混合预测模型。应用自适应噪声的完备集合经验模态分解模型与鲸鱼优化的变分模态分解模型分别对风速样本数据与预测误差进行分解,同时计算各子序列的模糊熵以判断序列复杂程度。在此基础上,应用鲸鱼优化的长短期网络预测复杂程度较高的序列,差分自回归移动平均模型预测复杂程度较低的序列。最后,将初始风速预测结果和风速误差预测值相加得到基于误差修正的超短期风速预测值。结果表明,修正预测误差与考虑分解策略可有效提升点预测的性能,与基准模型相比,所提模型在多场景下均具备优良的预测精度。

     

    Abstract: Wind speed is nonlinear and non-stationary. In order to improve the prediction accuracy of ultra short term wind speed,an adaptive hybrid prediction model with error correction is proposed. A fully ensemble empirical modal decomposition model with adaptive noise and an improved variational modal decomposition model are used to decompose the sample data series and the future prediction error series respectively,while the fuzzy entropy of each sub-series is calculated to determine the complexity of the series. Further,the improved long and short term network is applied to predict the higher complexity series and the autoregressive integrated moving average model to predict the lower complexity series. Finally,the prediction results and the wind speed error prediction values are summed to obtain the error-corrected ultra-short-term wind speed prediction values. The results show that the correction of forecast errors and double decomposition can effectively improve the performance of point prediction,and the proposed model has excellent prediction accuracy in multiple scenarios compared with the benchmark model.

     

/

返回文章
返回