贺飞, 张雪霞, 陈维荣. 基于P-L双重特征提取的PEMFC系统故障诊断方法[J]. 太阳能学报, 2024, 45(1): 492-499. DOI: 10.19912/j.0254-0096.tynxb.2022-1488
引用本文: 贺飞, 张雪霞, 陈维荣. 基于P-L双重特征提取的PEMFC系统故障诊断方法[J]. 太阳能学报, 2024, 45(1): 492-499. DOI: 10.19912/j.0254-0096.tynxb.2022-1488
He Fei, Zhang Xuexia, Chen Weirong. FAULT DIAGNOSIS METHOD OF PEMFC SYSTEM BASED ON P-L DUAL FEATURE EXTRACTION[J]. Acta Energiae Solaris Sinica, 2024, 45(1): 492-499. DOI: 10.19912/j.0254-0096.tynxb.2022-1488
Citation: He Fei, Zhang Xuexia, Chen Weirong. FAULT DIAGNOSIS METHOD OF PEMFC SYSTEM BASED ON P-L DUAL FEATURE EXTRACTION[J]. Acta Energiae Solaris Sinica, 2024, 45(1): 492-499. DOI: 10.19912/j.0254-0096.tynxb.2022-1488

基于P-L双重特征提取的PEMFC系统故障诊断方法

FAULT DIAGNOSIS METHOD OF PEMFC SYSTEM BASED ON P-L DUAL FEATURE EXTRACTION

  • 摘要: 针对质子交换膜燃料电池系统故障诊断问题,提出基于P-L双重特征提取的故障诊断方法。使用P-L双重特征提取对预处理后的样本数据进行特征提取,通过冗余变量剔除与二次特征提取,最大程度保留分类特征并有效降低样本数据维度。利用二叉树多类支持向量机与极限学习机对二维故障特征向量进行分类实现故障诊断。通过实例验证,对比线性判别分析的特征提取效果,P-L双重特征提取可使相同分类器测试集诊断准确率提高21.19%,诊断准确率达99.27%,实现了PEMFC系统膜干、氢气供应故障的精准快速诊断。

     

    Abstract: For the fault diagnosis of proton exchange membrane fuel cell(PEMFC)system,a fault diagnosis method based on P-L dual feature extraction was proposed. P-L dual feature extraction is used to extract features from the preprocessed sample data. Through redundant variable removal and secondary feature extraction,classification features are preserved to the maximum extent and the dimension of sample data is effectively reduced. Binary tree multi-class support vector machine and extreme learning machine are used to classify 2D fault feature vectors and realize fault diagnosis. Through the example verification,compared with the feature extraction effect of linear discriminant analysis,P-L dual feature extraction improves the diagnostic accuracy of the test set of the same classifier by21.19%,and the diagnostic accuracy reaches 99.27%,realizing the accurate and rapid diagnosis of membrane dry and hydrogen supply faults in PEMFC system.

     

/

返回文章
返回